Investigation of Nanomaterial Dipoles for SAR Reduction in Human Head

S. Jemima Priyadarshini 1  and D. Jude Hemanth 1
  • 1 Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India
S. Jemima Priyadarshini and D. Jude Hemanth
  • Corresponding author
  • Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, India
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The Nanomaterial is a pioneer in the field of modern research for its unique properties. Human exposure analysis is inevitable due to the rapid growth in technology. The concern for human welfare indicates a need for reduction of human exposure towards the radiation caused by the devices. The dielectric properties of the nanomaterials can be ideal for exploration in the field of biomedical engineering. Specific absorption rate (SAR) is a vital parameter for exposure analysis. This paper investigates the impact of Nanomaterials on the human exposure analysis. For this purpose, a dipole radiating structure operating at GSM frequency of 900 MHz and 1800 MHz are designed with conventional Copper material and compared with Carbon nanomaterials such as Graphene, Single-walled carbon nanotube (SWCNT) and Multi-walled carbon nanotube (MWCNT) for performance evaluation. Further, the specific absorption rate estimates absorption of radiation in IEEE Sam phantom human head with equivalent tissue properties. The comparison of calculated SAR with the radiating structures that are designed with the equivalent properties of that of Nanomaterials. The evaluation of Nanomaterial Antennas at the center frequency is estimated, and performance is evaluated. The designed Nanomaterials interact with IEEE SAM Phantom and SAR is calculated. The analysis of SAR impact with nanomaterials is investigated in this work.

  • [1]

    C. Cha, S. R. Shin, N. Annabi, M. R. Dokmeci, and A. Khademhosseini, “Carbon-based nanomaterials: Multifunctional materials for biomedical engineering,” ACS Nano, vol. 7, no. 4, pp. 2891–2897, 2013.

    • Crossref
    • PubMed
    • Export Citation
  • [2]

    W. Benjamin, S. Harrison, and A. Atala, “Carbon nanotube applications for tissue engineering,” Biomaterials, vol. 8, no. 2, pp. 344–353, 2007.

  • [3]

    H. Li, C. Xu, and K. Banerjee, “Carbon nanomaterials: The ideal interconnect technology for next-generation ICs,” IEEE Des. Test Comp., vol. 27, no. 4, pp. 20–31, 2010.

    • Crossref
    • Export Citation
  • [4]

    H. Li, C. Xu, N. Srivastava, and K. Banerjee, “Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects,” IEEE Trans. Electron Devices, vol. 56, no. 9, pp. 1799–1821, 2009.

    • Crossref
    • Export Citation
  • [5]

    M. D. Jeroh, “The impact of nanotechnology on mobile phones and computers,” J. Nano Adv. Mat., vol. 5, no. 1, pp. 17–22, 2017.

  • [6]

    M. J. Cadena, S. H. Sung, B. W. Boudouris, R. Reifenberger, and A. Raman, “Nanoscale mapping of dielectric properties of nanomaterials from kilohertz to megahertz using ultra small cantilevers,” ACS Nano, vol. 10, no. 4, pp. 4062–4071, 2016.

    • Crossref
    • Export Citation
  • [7]

    M. Särestöniemi, M. Hämäläinen, and J. Iinatti, “An overview of the electromagnetic simulation-based channel modeling techniques for wireless body area network applications,” IEEE Access, vol. 5, pp. 10622–10632, 2017.

    • Crossref
    • Export Citation
  • [8]

    A. Rifai and M. Hakami, “Health hazards of electromagnetic radiation,” J. Biosci. Med., vol. 2, pp. 1–12, 2014.

  • [9]

    M. A. Bhat and V. Kumar, “Calculation of SAR and measurement of temperature change of human head due to the mobile phone waves at frequencies 900 MHz and 1800 MHz,” Adv. Phys. Theor. Appl., vol. 16, pp. 54–63, 2013.

  • [10]

    A. J. Hempy, M. P. Civerolo, and D. Y. Arakaki, “Design and assembly of an antenna demonstration system,” IEEE Antennas Propag. Mag., vol. 54, no. 2, pp. 209–219, 2012.

    • Crossref
    • Export Citation
  • [11]

    M. S. Khan, A. D. Capobianco, S. M. Asif, A. Iftikhar, B. D. Braaten, and R. M. Shubair, “A properties comparison between copper and graphene-based UWB MIMO planar antennas,” in IEEE Int. Symp. Antennas Propag., 2016, pp. 1767–1768.

  • [12]

    M. T. Gatte, P. J. Soh, H. A. Rahim, R. B. Ahmad, and F. Malek, “The performance improvement of THz antenna via modeling and characterization of doped graphene,” Prog. Electromagn. Res. M, vol. 49, pp. 21–31, 2016.

    • Crossref
    • Export Citation
  • [13]

    A. M. Hussain, F. A. Ghaffar, S. I. Park, J. A. Rogers, A. Shamim, and M. M. Hussain, “Metal/polymer-based stretchable antenna for constant frequency far‐field communication in wearable electronics,” Adv. Funct. Mate., vol. 25, pp. 6565–6575, 2015.

    • Crossref
    • Export Citation
  • [14]

    N. A. Tran, H. N. Tran, M. C. Dang1, and E. Fribourg-Blanc, “Copper thin film for RFID UHF antenna on the flexible substrate,” Adv. Nat. Sci.: Nanosci. Nanatechnol., vol. 1, pp.025016–02522, 2010.

  • [15]

    M. Akbari, M. W. A. Khan, M. Hasani, T. Björninen, L. Sydänheimo, and L. Ukkonen, “Fabrication and characterization of graphene antenna for low-cost and environmentally friendly RFID tags,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 1569–1572, 2016.

    • Crossref
    • Export Citation
  • [16]

    A. Scidà, S. Haque, E. Treossi, A. Robinson, S. Smerzi, S. Ravesi, S. Borini, and V. Palermo, “Application of graphene-based flexible antennas in consumer electronic devices,” Mater Today, vol. 21, no. 3, pp. 223–230, 2018.

    • Crossref
    • Export Citation
  • [17]

    M. Dragomon, A. Muller, D. Dragomon, F. Cocetti, and R. Plana, “Terahertz antenna based on graphene,” J. Appl. Phys., vol. 107, pp. 10413–3, 2010.

  • [18]

    C. L. Holloway, C. J. Aydin Babajgabni, D. R. Long, N. D. Novotny, E. A. Orloff, D. S. Bengio, L. W. Taylor, and E. Dimitri, “Tsentalovich, high-efficiency carbon nanotube thread antennas,” Appl. Phys. Lett., vol. 111, pp. 163109, 2017.

    • Crossref
    • Export Citation
  • [19]

    G. W. Hanson, “Fundamental transmitting properties of carbon nanotube antennas,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3426–3435, 2005.

    • Crossref
    • Export Citation
  • [20]

    Y. Zhou, Y. Bayram, F. Du, L. Dai, and J. L. Volakis, “Polymer-carbon nanotube sheets for conformal load bearing antennas,” IEEE Trans. Antennas Propag., vol. 58, no. 7, pp. 2169–2175, 2010.

    • Crossref
    • Export Citation
  • [23]

    A. Mehdipour, I. D. Rosca, A. R. Sebak, C. W. Trumann, and S. V. Hoa, “Carbon nanotube composites for wideband millimeter-wave antenna applications,” IEEE Trans. Antennas Propag., vol. 59, no. 10, pp. 3572–3578, 2011.

    • Crossref
    • Export Citation
  • [24]

    S. F. Mahmoud and A. R. AlAjmi, “Analysis and design of carbon nanotube antenna in the sub terahertz frequency range,” in Loughborough Antennas Propag. Conf., 2014, pp. 206–209.

  • [25]

    A. M. Attiya, “Lower frequency limit of carbon nanotube antenna,” Prog. Electromagn. Res., vol. 94, pp. 419–433, 2009.

    • Crossref
    • Export Citation
  • [26]

    K. S. Chaya Devi, B. Angadi, and H. M. Mahesh, “NanoComposites based microstrip antenna for stealth applications,” Int. J. Electron Eng. Res. Appl., vol. 9, no. 1, pp. 99–103, 2017.

  • [27]

    E.-S. Sh.G., S. Wageh, S. M. Elhalafawy, and A. A. Sharshar, “Carbon nanotube antennas analysis, and applications: A review,” Adv. Nano Res., vol. 1, no. 1, pp. 13–27, 2013.

    • Crossref
    • Export Citation
  • [28]

    P. J. Burke, “An RF circuit model for carbon nanotubes,” IEEE Trans. Nanotechnol., vol. 2, no. 1, pp. 55–58, 2003.

    • Crossref
    • Export Citation
  • [29]

    Y. N. Jurn, M. F. B. A. Malek, and H. A. Rahim, “Mathematical analysis and modeling of single-walled carbon nanotube composite material for antenna applications,” Prog. Electromagn. Res. M, vol. 45, pp. 59–71, 2016.

    • Crossref
    • Export Citation
  • [30]

    A. R. Al Ajmi and S. F. Mahmoud, “Investigation of multiwall carbon nanotubes as antennas in the sub terahertz range,” IEEE Trans. Nanotechnol., vol. 13, no. 2, pp. 268–273, 2014.

    • Crossref
    • Export Citation
  • [31]

    T. A. Elwi, H. M. Al-Rizzo, D. G. Rucker, E. Dervishi, Z. Li, and A. S. Biri, “Multi-walled carbon nanotube-based RF antennas,” Nanotechnology, vol. 21, no. 4, pp. 045301–5, 2009.

    • PubMed
    • Export Citation
  • [32]

    M. N. Yogeesh, K. N. Parrish, and D. Akinwande, “Flexible graphite antennas for plastic electronics,” in IEEE 2nd Int. Conf. Emerg. Electron., 2014, pp. 1–4.

  • [33]

    D. S. Correas Serrano and J. Gomez-Diaz, “Graphene-based antennas for terahertz systems: A review,” 2017. arXiv:1704.00371

  • [34]

    I. Llatser, “Graphene-based nano patch antennas for terahertz systems,” Photonics Nanostruct. Fundam. Appl., vol. 10, no. 4, pp. 353–358, 2012.

    • Crossref
    • Export Citation
  • [35]

    S. Chaudhary, A. Kumar, and B. M. Singh, “Use of graphene as a patch material in comparison to the copper and other carbon nanomaterials,” IJETCAS, 2013, pp. 12–38.

  • [36]

    M. R. I. Faruque and M. T. Islam, “Design of miniaturized double-negative material for specific absorption rate reduction in human head,” PLoS ONE, vol. 9, no. 10, pp. e109947, 2014.

    • Crossref
    • PubMed
    • Export Citation
  • [37]

    L. Hamada, T. Iyama, T. Donnish, and S. Watanabe, “The specific absorption rate of mobile phones measured in a flat phantom and in the standardized human head phantom,” Proc. Electromagn. Conf., IECE, vol. 2, no. 4, pp. 1–5, 2009.

  • [38]

    R. Ikeuchi, K. H. Chan, and A. Hirata, “SAR and radiation characteristics of a dipole antenna above different finite EBG substrates in the presence of a realistic head model in the 3.5 GHz band,” Prog. Electromagn. Res. B, vol. 44, pp. 53–70, 2012.

    • Crossref
    • Export Citation
  • [39]

    J. N. Hwang and F. C. Chen, “Reduction of the peak SAR in the human head with metamaterials,” IEEE Trans. Antennas Propag., vol. 54, no. 12, pp. 3763–3770, 2006.

    • Crossref
    • Export Citation
  • [40]

    L. K. Ragha and M. S. Bhatia, “Evaluation of SAR reduction for dipole antenna using RF shield,” in Second Int. Conf. Emerg. Trends Eng. Technol., 2009, pp. 1075–1079

  • [41]

    J. S. Mandeep and H. Mustapha, “Design, and analysis of dipole and monopole antenna for CubeSat application,” Res. J. Appl. Sci. Eng. Technol., vol. 6, no. 17, pp. 3094–3097, 2013.

    • Crossref
    • Export Citation
  • [42]

    A. K. Lee, S. E. Hong, J. H. Kwon, and H. D. Choi, “SAR comparison of SAM phantom and anatomical head models for a typical bar-type phone model,” IEEE Trans. Electromagn. Compat., vol. 57, no. 5, pp. 1281–1284, 2015.

    • Crossref
    • Export Citation
  • [45]

    S. Clarke and U. Jakobus, “Dielectric material modeling in the MoM-based code FEKO,” IEEE Antennas Propag. Mag., vol. 47, no. 5, pp. 140–147, 2005.

    • Crossref
    • Export Citation
  • [47]

    P. Stavroulakis, Biological Effects of Electromagnetic Fields. Springer Science & Business Media, Switzerland, 2003.

  • [48]

    X. H. Jin, X. D. Huang, C. H. Cheng, and L. Zhu2, “Super-wideband printed asymmetrical dipole antenna,” Prog. Electromagn. Res. Lett., vol. 27, pp. 117–123, 2011.

    • Crossref
    • Export Citation
  • [50]

    P. Herman, “Schwan electrical Properties of tissue and cell suspensions,” Adv. Biol. Med. Phys., vol. 5, pp. 147–209, 1957.

    • Crossref
    • PubMed
    • Export Citation
  • [51]

    W. Kuang and S. O. Nelson, “Low-frequency dielectric properties of biological tissues: A review with some new insights,” Trans. ASAE, vol. 41, no. 1, pp. 173–184, 1998.

    • Crossref
    • Export Citation
  • [52]

    C. Gabriel, S. Gabriel, and E. Corthout, “The dielectric properties of biological tissues: I. Literature survey,” Phys. Med. Biol., vol. 41, pp. 2231–2249, 1996.

    • Crossref
    • PubMed
    • Export Citation
  • [54]

    S. M. Mikki and Y. M. M. Antar, “A theory of antenna electromagnetic near-field—part I,” IEEE Trans. Antennas Propag., vol. 59, no. 12, pp. 4691–4705, 2011.

    • Crossref
    • Export Citation
  • [56]

    S. Khalatbari, D. Sardari, A. A. Mirzaee, and H. A. Sadafi, “Calculating SAR in two models of the human head exposed to mobile phones radiations at 900 and 1800 MHz,” in Prog. Electromag. Symp., 2006, pp. 104–108.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search