Is Efate (Vanuatu, SW Pacific) a result of subaerial or submarine eruption? An alternative model for the 1 Ma Efate Pumice Formation

Robert Stewart 1 , Karoly Németh 1 ,  und Shane Cronin 1
  • 1 Volcanic Risk Solutions, CS-INR, Massey University, Palmerston North, NZ

Abstract

The Efate Pumice Formation (EPF) is a trachydacitic volcaniclastic succession widespread in the central part of Efate Island and also present on Hat and Lelepa islands to the north. The volcanic succession has been inferred to result from a major, entirely subaqueous explosive event north of Efate Island. The accumulated pumice-rich units were previously interpreted to be subaqueous pyroclastic density current deposits on the basis of their bedding, componentry and stratigraphic characteristics. Here we suggest an alternative eruptive scenario for this widespread succession. The major part of the EPF is distributed in central Efate, where pumiceous pyroclastic rock units several hundred meters thick are found within fault scarp cliffs elevated about 800 m above sea level. The basal 200 m of the pumiceous succession is composed of massive to weakly bedded pumiceous lapilli units, each 2-3 m thick. This succession is interbedded with wavy, undulatory and dune bedded pumiceous ash and fine lapilli units with characteristics of co-ignimbrite surges and ground surges. The presence of the surge beds implies that the intervening units comprise a subaerial ignimbrite-dominated succession. There are no sedimentary indicators in the basal units examined that are consistent with water-supported transportation and/or deposition. The subaerial ignimbrite sequence of the EPF is overlain by a shallow marine volcaniclastic Rentanbau Tuffs. The EPF is topped by reef limestone, which presumably preserved the underlying EPF from erosion. We here propose that the EPF was formed by a combination of initial subaerial ignimbrite-forming eruptions, followed by caldera subsidence. The upper volcaniclastic successions in our model represent intra-caldera pumiceous volcaniclastic deposits accumulated in a shallow marine environment in the resultant caldera. The present day elevated position of the succession is a result of a combination of possible caldera resurgence and ongoing arc-related uplift in the region.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] Lloyd E.D., Nathan S., Smith I.E.M., Stewart R.B., Volcanic history of Macauley island, Kermadec ridge, New Zealand, New Zeal. J. Geol. Geop., 1996, 39, 295–308

  • [2] Smith I.E.M., Stewart R.B., Price R.C., The petrology of a large intra-oceanic silicic eruption: the Sandy Bay Tephra, Kermadec Arc, Southwest Pacific, J. Volcanol. Geoth. Res., 2003, 124, 173–194 http://dx.doi.org/10.1016/S0377-0273(03)00040-4

  • [3] Leat P.T., Larter R.D., Millar I.L., Silicic magmas of Protector Shoal, South Sandwich arc: indicators of generation of primitive continental crust in an island arc, Geol. Mag., 2007, 144, 179–190 http://dx.doi.org/10.1017/S0016756806002925

  • [4] Graham i.J., Reyes A.G., Wright i.C., Peckett K.M., Smith I.E.M., Arculus R.J., Structure and petrology of newly discovered volcanic centers in the northern Kermadec-southern Tofua arc, South Pacific Ocean, J. Geophys. Res.-Sol. Ea., 2008, 113(B8), doi: B08s02 10.1029/2007jb005453

  • [5] Bachmann O., The petrologic evolution and preeruptive conditions of the rhyolitic Kos Plateau Tuff (Aegean arc), Centr. Eur. J. Geosci., 2010, doi: 10.2478/v10085-010-0009-4, in press

  • [6] Pelletier B., Calmant S., Pillet R., Current tectonics of the Tonga New Hebrides region, Earth Planet. Sc. Lett., 1998, 164, 263–276

  • [7] Pelletier B., Louat R., Seismotectonics And Present-Day Relative Plate Motions in The Tonga-Lau And Kermadec-Havre Region, Tectonophysics, 1989, 165, 237–250 http://dx.doi.org/10.1016/0040-1951(89)90049-8

  • [8] Dubois J., Deplus C., Diament M., Daniel J, Collot J.Y., Subduction Of The Bougainville Seamount (Vanuatu) — Mechanical And Geodynamic implications, Tectonophysics, 1988, 149, 111–119 http://dx.doi.org/10.1016/0040-1951(88)90121-7

  • [9] Lafoy Y., Dupont J., Missegue F., Lesuave R., Pautot G, Effects Of The Loyalty Ridge — New Hebrides Arc Collision On The Southern Ends Of The New-Caledonia And Loyalty Ridges, Cr. Acad. Des Sci. ii, 1995, 320, 1101–1108

  • [10] Van de Beuque S., Auzende J.M., Lafoy Y., Missegue F., Tertiary tectonic and volcanism on the Lord Howe Rise (South West Pacific), Cr. Acad. Des Sci. ii, 1998, 326, 663–669

  • [11] Sdrolias M., Muller R.D., Mauffret A., Bernardel G., Enigmatic formation of the Norfolk Basin, SW Pacific: A plume influence on back-arc extension. Geochem. Geophy. Geosy., 2004, 5. Q06005, doi:10.1029/2003GC000643

  • [12] Greene H.G., Collot J.-Y., Fisher M.A., Crawford A., Neogene tectonic evolution of the New Hebrides island arc: a review incorporating ODP drilling result. in: Proceeding of the Ocean Drilling Program, Scientific Results, 134. Ocean Drilling Program, Greene, H.G., Collot J.Y., Stokking L.B., (Eds.) 1994, ODP: College Station, Texas, 19–46

  • [13] Meffre S., Crawford A.J., Collision tectonics in the New Hebrides arc (Vanuatu), isl. Arc, 2001, 10, 33–50 http://dx.doi.org/10.1046/j.1440-1738.2001.00292.x

  • [14] Collot J.Y., Lallemand S., Pelletier B., Eissen J.P., Glacon G., Fisher M.A., Greene H.G., Boulin J., et al., Geology Of The Dentrecasteaux-New Hebrides Arc Collision Zone — Results From A Deep Submersible Survey, Tectonophysics, 1992, 212, 213–241 http://dx.doi.org/10.1016/0040-1951(92)90292-E

  • [15] Daniel J., Collot J.Y., Monzier M., Pelletier B., Butscher J., Deplus C., Dubois J., Gerard M., et al., Subduction And Collisions Along The New-Hebrides island-Arc (Vanuatu) — Preliminary-Results Of The Seapso Cruise (Leg-i)., Cr. Acad. Des Sci. ii, 1986, 303, 805–810

  • [16] Recy J., Charvis P., Ruellan E., Monjaret M.C., Gerard M., Auclair G., Baldassari C., Boirat J.M., et al, Tectonics And Submarine Volcanism in The New Hebrides Back Arc Area (Vanuatu, Southwest Pacific) — Preliminary-Results Of The Seapso Cruise Leg-ii Of The R/V Jean-Charcot. Cr. Acad. Des Sci. ii, 1986, 303, 685–690

  • [17] Chatelain J.L., Molnar P., Prevot R., isacks B., Detachment Of Part Of The Downgoing Slab And Uplift Of The New Hebrides (Vanuatu) islands, Geophys. Res. Lett., 1992, 19(14), 1507–1510 http://dx.doi.org/10.1029/92GL01389

  • [18] Chatelain, J.L., Guillier, B., Gratier, J.P., Unfolding The Subducting Plate in The Central New Hebrides island-Arc — Geometrical Argument For Detachment Of Part Of The Downgoing Slab, Geophys. Res. Lett., 1993, 20, 655–658 http://dx.doi.org/10.1029/93GL00681

  • [19] Peate, D.W., Pearce, J.A., Hawkesworth, C.J., Colley, H., Edwards, C.M.H., Hirose, K., Geochemical variations in Vanuatu arc lavas: the role of subducted material and a variable mantle wedge composition, J. Petrol., 1997, 38, 1331–1358 http://dx.doi.org/10.1093/petrology/38.10.1331

  • [20] Raos A.M., McPhie J., The submarine record of a large-scale explosive eruption in the Vanuatu Arc: ∼1 Ma Efate Pumice Formation. in: White J.D.L., Smellie J.L., Clague D.A. (Eds.) Explosive subaqueous volcanism, American Geophysical Union, Washington D.C., 2003, 273–283

  • [21] Bath A.H., Burgess W.G., Carney J.N., The chemistry and hydrology of thermal springs on Efate, Vanuatu, SW Pacific. Geothermics, 1986, 15, 277–294 http://dx.doi.org/10.1016/0375-6505(86)90105-7

  • [22] Carney J.N., Efate geothermal project, Phase 1. Geology and reconnaissance hydrology. Report of the institute of Geological Sciences (Overseas Division), Keyworth, UK, 1982, 82/11

  • [23] Ash R.P., Carney J.N., Macfarlane A., Geology of Efate and offshore islands. New Hebrides Condominium Geological Survey, 1978

  • [24] Raos A.M., Crawford A.J., Basalts from the Efate island Group, central section of the Vanuatu arc, SW Pacific: geochemistry and petrogenesis. J. Volcanol. Geoth. Res., 2004, 134, 35–56 http://dx.doi.org/10.1016/j.jvolgeores.2003.12.004

  • [25] Taylor F.W., Frohlich C., Lecolle J., Strecker M., Analysis of partially emerged corals and reef terraces in the Central Vanuatu Arc — Comparison of contemporary coseismic and nonseismic with Quaternary vertical movements. J. Geophys. Res.-Solid, 1987, 92(B6), 4905–4933 http://dx.doi.org/10.1029/JB092iB06p04905

  • [26] Lecolle J.F., Bokilo J.E., Bernat M., Quaternary uplift and tectonism of the ile-Efate, New-Hebrides (Vanuatu) island-Arc — Dating of uplifted terraces by the U/Th method. Mar. Geol., 1990, 94, 251–270 http://dx.doi.org/10.1016/0025-3227(90)90072-R

  • [27] Ash R.P., Carney J.N., Macfarlane A., Geology of Efate and offshore islands. New Hebrides Condominium Geological Survey, 1978

  • [28] Allen S.R., McPhie J., Water-settling and resedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece, J. Volcanol. Geoth. Res., 2000, 95, 285–307 http://dx.doi.org/10.1016/S0377-0273(99)00127-4

  • [29] Doyle M.G., McPhie J., Shallow-water microbialite-volcaniclastic facies association in the Cambro-Ordovician Mt Windsor Subprovince, Australia. Aust. J. of Earth Sci., 2001, 48, 815–831

  • [30] Cas R., Wright J., Volcanic Successions, Modern and Ancient, Allen and Unwin, London Boston Sydney Wellington, 1987

  • [31] Fisher R.V., Schmincke H.-U., Pyroclastic Rocks, Springer, Heidelberg, 474, 1984

  • [32] Wilson C.J.N., Houghton B.F., McWilliams M.O., Lanphere M.A., Weaver S.D., Briggs R.M., Volcanic and structural evolution of Taupo Volcanic Zone, New-Zealand — A review, J. Volcanol. Geoth. Res., 1995, 68, 1–28 http://dx.doi.org/10.1016/0377-0273(95)00006-G

  • [33] Manville V., Wilson C.J.N., The 26.5 ka Oruanui eruption, New Zealand: a review of the roles of volcanism and climate in the post-eruptive sedimentary response, New Zeal. J. Geol. Geop., 2004, 47, 525–547

  • [34] Allen S.R., Reconstruction of a major caldera-forming eruption from pyroclastic deposit characteristics: Kos Plateau Tuff, eastern Aegean Sea, J. Volcanol. Geoth. Res., 2001, 105, 141–162 http://dx.doi.org/10.1016/S0377-0273(00)00222-5

  • [35] Yokoyama, S., Rapid formation of river terraces in non-welded ignimbrite along the Hishida River, Kyushu, Japan. Geomorphology, 1999, 30, 291–304 http://dx.doi.org/10.1016/S0169-555X(99)00037-9

  • [36] Allen S.R., Stadlbauer E., Keller J., Stratigraphy of the Kos Plateau Tuff: product of a major Quaternary explosive rhyolitic eruption in the eastern Aegean, Greece, int. J. Earth Sci., 1999, 88, 132–156 http://dx.doi.org/10.1007/s005310050251

  • [37] Maeno F., Taniguchi H., Spatiotemporal evolution of a marine caldera-forming eruption, generating a low-aspect ratio pyroclastic flow, 7.3 ka, Kikai caldera, Japan: implication from near-vent eruptive deposits, J. Volcanol. Geoth. Res., 2007, 167, 212–238 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.003

  • [38] Cas R.A.F., Wright J.V., Subaqueous pyroclastic flows and ignimbrites — An assessment, B. Volcanol., 1991, 53, 357–380 http://dx.doi.org/10.1007/BF00280227

  • [39] Sparks R.S.J., Self S., Walker G.P.L., Products of ignimbrite eruptions, Geology, 1973, 1, 115–118 http://dx.doi.org/10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2

  • [40] Sparks R.S.J., Grain size variations in ignimbrites and implications for the transport of pyroclastic flows, B. Volcanol., 1976, 23, 147–188

  • [41] Fisher R.V., Smith A.L., Wright J.V., Roobol M.J., ignimbrite veneer deposits or pyroclastic surge deposits. Nature, 1980, 286, 912–912 http://dx.doi.org/10.1038/286912a0

  • [42] Walker G.P.L., Wilson C.J.N., Froggatt P.C., Fines-depleted ignimbrite in New-Zealand — The product of a turbulent pyroclastic flow, Geology, 1980, 8, 245–249 http://dx.doi.org/10.1130/0091-7613(1980)8<245:FIINZT>2.0.CO;2

  • [43] Cas R.A.F., Wright J.V., Subaqueous pyroclastic flows and ignimbrites: an assessment, B. Volcanol., 1991, 53, 357–380 http://dx.doi.org/10.1007/BF00280227

  • [44] Kokelaar P., Busby C., Subaqueous explosive eruption and welding of pyroclastic deposits, Science, 1992, 257, 196–200 http://dx.doi.org/10.1126/science.257.5067.196

  • [45] Cas R.A.F., Submarine volcanism — eruption styles, products, and relevance to understanding the host-rock successions to volcanic-hosted massive sulfide deposits, Econ. Geol., 1992, 87, 511–541 http://dx.doi.org/10.2113/gsecongeo.87.3.511

  • [46] White J.D.L., Subaqueous eruption-fed density currents and their deposits, Precambrian Res., 2000, 101, 87–109 http://dx.doi.org/10.1016/S0301-9268(99)00096-0

  • [47] Brown R.J., Barry T.L., Branney M.J., Pringle M.S., Bryan S.E., The Quaternary pyroclastic succession of southeast Tenerife, Canary islands: explosive eruptions, related caldera subsidence, and sector collapse, Geol. Mag., 2003, 140, 265–288 http://dx.doi.org/10.1017/S0016756802007252

  • [48] Freundt, A., Entrance of hot pyroclastic flows into the sea: experimental observations, B. Volcanol., 2003, 65, 144–164

  • [49] Woodroffe C.D., Sea level studies — Coral Records., in: Elias S.A., (Ed.). Encyclopedia ofQuaternary Science, Elsevier Ltd.: Amsterdam, 2007, 3006–3015 http://dx.doi.org/10.1016/B0-44-452747-8/00139-3

  • [50] Chen J.K., Taylor F.W., Edwards R.L., Cheng H., Burr G.S., Recent emerged reef terraces of the Yenkahe Resurgent Block, Tanna, Vanuatu — implications for volcanic, landslide and tsunami hazards, J. Geol., 1995, 103, 577–590 http://dx.doi.org/10.1086/629777

  • [51] Meffre S., Crawford A., Collision tectonics in the New Hebrides arc (Vanuatu). isl. Arc, 2001, 10, 33–50 http://dx.doi.org/10.1046/j.1440-1738.2001.00292.x

  • [52] Kruger J., Sharma A., High-Resolution Bathymetric Survey of Efate, Fieldwork undertaken from 2 to 27 August 2003. EU EDF 8 — SOPAC Project Report (Reducing Vulnerability of Pacific ACP States), 2008, 110, 1–232

  • [53] Krueger J., Sharma A., High-resolution bathymetric survey of Efate. Vanuatu Technical Report, 2008, EU EDF 8 - SOPAC Project Report 110 (Reducing vulnerability of Pacific ACP states)

  • [54] Monzier M., Robin C., Eissen J.P., Kuwae (Approximate-to-1425 AD) — The forgotten caldera, J. Volcanol. Geoth. Res., 1994, 59, 207–218 http://dx.doi.org/10.1016/0377-0273(94)90091-4

  • [55] Hoffmann A., Looking to Epi: further consequences of the Kuwae eruption, Central Vanuatu, AD 1452, Indo-Pacific Prehistory Association Bulletin, 2006, 26, 62–71

  • [56] Gao C., Robock A., Self S., Witter J.B., Steffenson J.P., Clausen H.B., Siggaard-Andersen M.-L., Johnsen S., aet al., The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years, J. Geophys. Res., 2006, 111(D12107), doi: 10.1029/2005JD006710

  • [57] Witter J.B., Self S., The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release, B. Volcanol., 2007, 69, 301–318 http://dx.doi.org/10.1007/s00445-006-0075-4

  • [58] Németh K., Cronin S.J., White J.D.L., Kuwae caldera and climate confusion, The Open Geology Journal (Bentham Sciences), 2007, 1, 7–11, doi: 10.2174/1874262900701010007

  • [59] Gibbons J.R.H., Clunie F.G.A.U., Sea level changes and Pacific prehistory: New insight into early human settlement of Oceania, The Journal of Pacific History, 1986, 21, 58–82 http://dx.doi.org/10.1080/00223348608572529

  • [60] Daly R.A., The glacial-control theory of coral reefs, P. Am. Acad. Arts Sci., 1915, 51, 155–251

  • [61] Murray-Wallace C.V., Sea level studies — Eustatic sea-level changes, glacial-interglacial cycles. in: Elias S.A., (Ed.) Encyclopedia of Quaternary Science, Elsevier Ltd.: Amsterdam, 2007, 3024–3034 http://dx.doi.org/10.1016/B0-44-452747-8/00140-X

  • [62] Veeh H.H., Th230/U238 and U234/U238 ages of Pleistocene high sea level stand, J. Geophys. Res., 1966, 71, 3379–3386

  • [63] Gibbard P., Cohen K.M., Global chronostratigraphical correlation table for the last 2.7 million years, Episodes, 2008, 31, 243–247

  • [64] Pécskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Konecny V., Kovács M., Márton E., et al., Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region. Acta Vulcanologica, 1995, 7, 15–28

  • [65] Seghedi I., Downes H., Szakacs A., Mason P.R.D., Thirlwall M.F., Rosu E., Pecskay Z., Marton E., et al., Neogene-Quaternary magmatism and geodynamics in the Carpathian-Pannonian region: a synthesis, Lithos, 2004, 72, 117–146 http://dx.doi.org/10.1016/j.lithos.2003.08.006

  • [66] Szakács A., Zelenka T., Marton E., Pécskay Z., Póka T., Seghedi i., Miocene acidic explosive volcanism in the Bükk Foreland, Hungary;identifying eruptive sequences and searching for source locations, Acta Geologica Hungarica, 1998, 41, 413–435

  • [67] Harangi S., Neogene magmatism in the Alpine-Pannonian Transition Zone — a model for melt generation in a complex geodynamic setting, Acta Vulcanologica, 2001, 13, 25–39

  • [68] Szabó C., Harangi S., Csontos L., Review of Neogene and Quaternary Volcanism ofthe Carpathian Pannonian Region, Tectonophysics, 1992, 208, 243–256 http://dx.doi.org/10.1016/0040-1951(92)90347-9

  • [69] Harangi S., Mason P.R.D., Lukacs R., Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints, J. Volcanol. Geoth. Res., 2005, 143, 237–257 http://dx.doi.org/10.1016/j.jvolgeores.2004.11.012

  • [70] Bada G., Horváth F., On the structure and tectonic evolution of the Pannonian basin and surrounding orogens, Acta Geologica Hungarica, 2001, 44, 301–327

  • [71] Cloetingh S., Lankreijer A., Nemcok M., Neubauer F., Horvath F., Sedimentary basins and hydrocarbon habitat at the margin of the Pannonian basin system: introduction, Mar. Petrol. Geol., 2001, 18, 1–2 http://dx.doi.org/10.1016/S0264-8172(00)00039-8

  • [72] Csato I., Neogene Sequences in the Pannonian Basin, Hungary, Tectonophysics, 1993, 226, 377–400 http://dx.doi.org/10.1016/0040-1951(93)90128-7

  • [73] Horvath F., Towards A Mechanical Model For The Formation Of The Pannonian Basin, Tectonophysics, 1993, 226, 333–357 http://dx.doi.org/10.1016/0040-1951(93)90126-5

  • [74] Juhász E., Kovacs L.O., Muller P., Toth-Makk A., Phillips L., Lantos M., Climatically driven sedimentary cycles in the Late Miocene sediments ofthe Pannonian Basin, Hungary, Tectonophysics, 1997, 282, 257–276 http://dx.doi.org/10.1016/S0040-1951(97)00222-9

  • [75] Juhász E., Phillips L., Müller P., Ricketts B., Tóth M.A., Lantos M., Kovács L., Late Neogene sedimentary facies and sequences in the Pannonian Basin, Hungary. in: Durand B., Jolivet L., Horvath F., Ranne M. (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen, Geological Society of London: London, United Kingdom, 1999, 335–356

  • [76] Sacchi M., Horváth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental cord; a case study from the late Miocene of the western Pannonian Basin, Hungary. in: Durand B., Jolivet L., Horvath F., Ranne M. (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen, Geological Society of London: London, United Kingdom, 1999, 357–390

  • [77] Nemcok M., Pospisil L., Lexa J., Donelick R.A., Tertiary subduction and slab break-off model of the Carpathian-Pannonian region, Tectonophysics, 1998, 295, 307–340 http://dx.doi.org/10.1016/S0040-1951(98)00092-4

  • [78] Pecskay Z., Lexa J., Szakacs A., Seghedi I., Balogh K., Konecny V., Zelenka T., Kovacs M. et al., Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathia n area, Geolog. Carpath., 2006, 57, 511–530

  • [79] Lexa J., Outline of the Alpine geology and metallogeny of the Carpatho-Pannonian region, Guidebook Series - Society of Economic Geologists, 1999, 31, 65–108

  • [80] Lexa J., Konecny V., The Carpathian volcanic arc; a discussion. Acta Geologica Academiae Scientiarum Hungaricae, 1974, 18, 279–293

  • [81] Széky-Fux V., Maury R., Tokaji-hegységi riolittufaárak és propilites andezitláva hömérséklete szenesedett fatörzsek szerves anyagának infravörös spektruma alapjan, Földtani Közlöny, 1978, 108, 564–570 (in Hungarian)

  • [82] Bajnöczi B., Molnár F., Maeda K., izawa E., Shallow level low-sulphidation type epithermal systems in the Regec caldera, Central Tokaj Mts., NE-Hungary, Geolog. Carpath., 2000, 51, 217–227

  • [83] Csank E., A Tokaji-hegységi piroklasztikumban elöforduló üvegek megmerevedési formái, Annual Report of the Hungarian Geological institute, Budapest, 1967, 1969, 299–302 (in Hungarian)

  • [84] Fegyvari T., Horvath J., Zelenka T., A paleovulkani szerkezetek a Tokajü hegysegben ur- es legisfenykep alapjan, Foldtani Kutatas, 1990, 33, 123–125 (in Hungarian)

  • [85] Gyarmati P., Vulkani kozetminostes problematikaja Tokaji-hegysegi peldakon. Foldtani Kozlony, 1961, 91, 374–381 (in Hungarian)

  • [86] Ilkey-Perlaki E., Tokaji-hegysegi riolittufak alkalmazasi kozetjellegei. Foldtani Kozlony, 1966, 96, 55–170 (in Hungarian)

  • [87] Mátyás E., Volcanic and postvolcanic processes in the Tokaj Mountains on the basis of geological data of raw material prospecting, Acta Geologica Academiae Scientiarum Hungaricae, 1974, 18, 421–455

  • [88] Molnár F., Zelenka T., Fluid inclusion characteristics and paleothermal structure of the adularia-sericite type epithermal deposit at Telkibanya- Tokaj Mts, Northeast Hungary, Geol. Carpath., 1995, 46, 205–215

  • [89] Pantó G., A Tokaji-hegység földtani vizsgálatának 1964 évi eredményei, Magy. Állami Földt. intéz., Évi Jelentése (1964), 1966, 439–442 (in Hungarian)

  • [90] Székyné Fux V., Balogh K., Szakáll S., A Tokajihegyseg intermedier es bazisos vulkanossaganak kora es idotardtama a K/Ar vizsgalatok tuekreben, Földtani Közlöny, 1981, 111, 413–423 (in Hungarian)

  • [91] Rózsa P., Papp L., Tokajü-hegysegi vulkani es szubvulkani kizetek elkulonitese szemnagysagi osszeteteluk alapjan, Földtani Közlöny, 1988, 118, 265–275 (in Hungarian)

  • [92] Pécskay Z., Molnár F., Relationships between volcanism and hydrothermal activity in the Tokaj Mountains, Northeast Hungary, based on K-Ar ages, Geol. Carpath. (Bratislava), 2002, 53, 303–314

  • [93] Németh K., Pécskay Z., Martin U., Gméling K., Molnár F., Cronin S.J., Hyaloclastites, peperites and soft-sediment deformation textures of a shallow subaqueous Miocene rhyolitic dome-cryptodome complex, Pálháza, Hungary. in: Thomson K., Petford N. (Eds), Structure and Emplacement of High-Level Magmatic Systems. Geological Society, London, Special Publications 2008, 302 63–86

  • [94] Martin U., Molnár F., Németh K., Pécskay Z. Miocene multiple resurgent caldera system in the Tokaj Mts., Carpathian Volcanic Chain, Hungary. in: international Union of Geodesy and Geophysics 23rd General Assembly, iAVCEi. 2003. Sapporo, Japan, p. A.527

OPEN ACCESS

Zeitschrift + Hefte

Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an international, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Geology, Geophysics, Geography, Geomicrobiology, Geotourism, Oceanography and Hydrology, Glaciology, Atmospheric Sciences, Speleology, Volcanology, Soil Science, Geoinformatics, Geostatistics. The journal is published in the Open Access model.

Suche