Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: “soft-substrate” to “combined” aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article

Károly Németh 1 , Shane Cronin 1 , Miguel Haller 1 , Marco Brenna 2  and Gabor Csillag 3
  • 1 Volcanic Risk Solutions CS-INR, Massey University, PO Box 11 222, Palmerston North, New Zealand
  • 2 Universidad Nacional de la Patagonia San Juan Bosco — Sede Puerto Madryn, Consejo Nacional de Investigaciones Cientfficas y Técnicas, Argentina
  • 3 Department of Geological Research, Geological Institute of Hungary, Stefánia út 14, H-1143, Budapest, Hungary

Abstract

The Pannonian Basin (Central Europe) hosts numerous alkali basaltic volcanic fields in an area similar to 200 000 km2. These volcanic fields were formed in an approximate time span of 8 million years producing smallvolume volcanoes typically considered to be monogenetic. Polycyclic monogenetic volcanic complexes are also common in each field however. The original morphology of volcanic landforms, especially phreatomagmatic volcanoes, is commonly modified. by erosion, commonly aided by tectonic uplift. The phreatomagmatic volcanoes eroded to the level of their sub-surface architecture expose crater to conduit filling as well as diatreme facies of pyroclastic rock assemblages. Uncertainties due to the strong erosion influenced by tectonic uplifts, fast and broad climatic changes, vegetation cover variations, and rapidly changing fluvio-lacustrine events in the past 8 million years in the Pannonian Basin have created a need to reconstruct and visualise the paleoenvironment into which the monogenetic volcanoes erupted. Here phreatomagmatic volcanic fields of the Miocene to Pleistocene western Hungarian alkali basaltic province have been selected and compared with modern phreatomagmatic fields. It has been concluded that the Auckland Volcanic Field (AVF) in New Zealand could be viewed as a prime modern analogue for the western Hungarian phreatomagmatic fields by sharing similarities in their pyroclastic successions textures such as pyroclast morphology, type, juvenile particle ratio to accidental lithics. Beside the AVF two other, morphologically more modified volcanic fields (Pali Aike, Argentina and Jeju, Korea) show similar features to the western Hungarian examples, highlighting issues such as preservation potential of pyroclastic successions of phreatomagmatic volcanoes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] White J.D.L., Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA, B. Volcanol., 1991, 53, 239–258 http://dx.doi.org/10.1007/BF00414522

  • [2] Manville V., Nemeth K., Kano K., Source to sink: A review of three decades of progress in the understanding of volcaniclastic processes, deposits, and hazards, Sediment. Geol., 2009, 220, 136–161 http://dx.doi.org/10.1016/j.sedgeo.2009.04.022

  • [3] Lorenz V., On the growth of maars and diatremes and its relevance to the formation of tuff rings, B. Volcanol., 1986, 48, 265–274 http://dx.doi.org/10.1007/BF01081755

  • [4] Lorenz V., Maars and diatremes of phreatomagmatic origin: a review, Transactions of the Geological Society of South Africa, 1985, 88, 459–470

  • [5] Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes, J. Volcanol. Geoth. Res., 2007, 159, 4–32 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.019

  • [6] Martin U., Németh K., Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin, Geologica Hungarica Series Geologica, 2004, Budapest, Geological Institute of Hungary

  • [7] Allen S.R., Bryner V.F., Smith I.E.M., Ballance P.F., Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand, New Zeal. J. Geol. Geop., 1996, 39, 309–327

  • [8] Magill, C., Blong, R., Volcanic risk ranking for Auckland, New Zealand. I: Methodology and hazard investigation, B. Volcanol., 2005, 67, 331–339. http://dx.doi.org/10.1007/s00445-004-0374-6

  • [9] Houghton B.F., Wilson C.J.N., Rosenberg M.D., Smith I.E.M., Parker R.J., Mixed deposits of complex magmatic and phreatomagmatic volcanism: An example from Crater Hill, Auckland, New Zeal. B. Volcanol., 1996, 58, 59–66 http://dx.doi.org/10.1007/s004450050126

  • [10] von Veh M.W., Nemeth K., An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand. Geomorphologie-Relief Processus Environnement, 2009, 175-186

  • [11] Németh K., Martin U., Late Miocene paleogeomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Z. für Geomorph., 1999, 43, 417–438

  • [12] Németh K., Martin U., Philippe M., Eroded porousmedia aquifer controlled hydrovolcanic centers in the South Lake Balaton region, Hungary;the Boglár Volcano, Acta Geologica Hungarica, 1999, 42, 251–266

  • [13] Németh K., Martin U., Csillag G., Erosion rate calculation based on eroded monogenetic alkaline basaltic volcanoes of the Mio/Pliocene Bakony-Balaton Highland Volcanic Field, Hungary, Geolines, 2003, 15, 93–97

  • [14] Németh K., Martin U., Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony — Balaton Highland Volcanic Field, Hungary, Acta Vulcanologica, 1999, 11, 271–282

  • [15] Ruszkiczay-Rüdiger Z., Fodor L., Horváth E., Telbisz T., Discrimination of fluvial, eolian and neotectonic features in a low hilly landscape: A DEM-based morphotectonic analysis in the Central Pannonian Basin, Hungary, Geomorphology, 2009, 104, 203–217 http://dx.doi.org/10.1016/j.geomorph.2008.08.014

  • [16] Sohn Y.K., Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea, Geol. Soc. Am. Bull., 1996, 108, 1199–1211. http://dx.doi.org/10.1130/0016-7606(1996)108<1199:HPFBTR>2.3.CO;2

  • [17] Sohn Y.K., Park K.H., Yoon S.H., Primary versus secondary and subaerial versus submarine hydrovolcanic deposits in the subsurface of Jeju Island, Korea, Sedimentology, 2008, 55, 899–924 http://dx.doi.org/10.1111/j.1365-3091.2007.00927.x

  • [18] Sohn Y.K., Park K.H., Early-stage volcanism and sedimentation of Jeju island revealed by the Sagye Borehole, SW Jeju Island, Korea. Geosci. J., 2004, 8, 73–84 http://dx.doi.org/10.1007/BF02910280

  • [19] Sohn Y.K., Chough S.K., Depositional processes of the Suwolbong Tuff Ring, Cheju Island (Korea). Sedimentology, 1989, 36, 837–855 http://dx.doi.org/10.1111/j.1365-3091.1989.tb01749.x

  • [20] Briggs R.M., Okada T., Itaya T., Shibuya H., Smith I.E.M., K-Ar Ages, paleomagnetism, and geochemistry of the South Auckland Volcanic Field, North-Island, New-Zealand, New Zeal. J. Geol. Geop., 1994, 37, 143–153

  • [21] Spörli K.B., Eastwood, V.R., Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J. Volcanol. Geoth. Res., 1997, 79, 169–179 http://dx.doi.org/10.1016/S0377-0273(97)00030-9

  • [22] Kermode L.O., Geology of the Auckland urban area (with map in scale 1: 50 000). Institute of Geological & Nuclear Sciences geological map 2. 1 sheet + Explanatory Book, 1992, Institute of Geological & Nuclear Sciences, Lower Hutt, New Zealand

  • [23] Rogan W., Blake S., Smith I., In situ chemical fractionation in thin basaltic lava flows: Examples from the Auckland volcanic field, New Zealand, and a general physical model, J. Volcanol. Geoth. Res., 1996, 74, 89–99 http://dx.doi.org/10.1016/S0377-0273(96)00059-5

  • [24] Affleck D.K., Cassidy J., Locke C.A., Te Pouhawaiki Volcano and pre-volcanic topography in central Auckland: volcanological and hydrogeological implications, New Zealand Journal of Geology and Geophysics, 2001, 44, 313–321 http://dx.doi.org/10.1080/00288306.2001.9514940

  • [25] Cassidy J., France S.J., Locke C.A., Gravity and magnetic investigation of maar volcanoes, Auckland volcanic field, New Zealand. Journal of Volcanology and Geothermal Research, 2007, 159, 153–163 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.007

  • [26] Marra M.J., Alloway B.V., Newnham R.M., Paleoenvironmental reconstruction ofa well-preserved Stage 7 forest sequence catastrophically buried by basaltic eruptive deposits, northern New Zealand, Quaternary Science Reviews, 2006, 25, 2143–2161 http://dx.doi.org/10.1016/j.quascirev.2006.01.031

  • [27] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring that developed in a fluviolacustrine basin: Kissomlyö Volcano (Western Hungary), J. Volcanol. Geoth. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.019

  • [28] Heiken G.H., Tuff Rings — Examples From Fort Rock-Christmas Lake Valley Basin, South Central Oregon, J. Geophys. Res., 1971, 76, 5615 http://dx.doi.org/10.1029/JB076i023p05615

  • [29] Houghton B.F., Wilson C.J.N., Smith I.E.M., Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand, J. Volcanol. Geoth. Res., 1999, 91, 97–120 http://dx.doi.org/10.1016/S0377-0273(99)00058-X

  • [30] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned vol-canic complex — Implications for vent geometry, sub-surface stratigraphy and the palaeoenvironmental setting, J. Volcanol. Geoth. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.008

  • [31] Cronin S.J., Németh K., Smith I.E.M., Leonard G., Shane P., Possible rejuvenation of volcanism at the “monogenetic” phreatomagmatic/magmatic volcanic complex of Panmure Basin, Auckland Volcanic Field, New Zealand. In: Haller M.J. and Massaferro G. (Eds.), IAVCEI-IAS 3rd International Maar Conference 2009. Malargue, Argentina: Asociacion Geologica Argentina

  • [32] Németh K., Cronin S.J., Smith I.E.M., Stewart R.B. Mechanisms of a maar-forming eruption through soft fine-grained sedimentary substrate: Orakei Basin, Auckland, New Zealand. In: Haller M.J. and Massaferro G. (Eds.), IAVCEI-IAS 3rd International Maar Conference 2009. Malargue, Argentina: Asociacion Geologica Argentina

  • [33] McDougall I., Pollack H.A., Stipp J.J., Excess radiogenic argon in young subareal basalts from Auckland volcanic field, New Zealand. Geochim. Cosmochim. Acta, 1969, 33, 1485–1520 http://dx.doi.org/10.1016/0016-7037(69)90152-5

  • [34] Allen S.R., Bryner V.F., Smith I.E.M., Ballance P.F., Auckland volcanic field tuff ring deposits. In: Anonymous Editor, International volcanological congress, IAVCEI;abstracts., 1994, IAVCEI

  • [35] Allen S.R., Smith I.E.M., Eruption styles and volcanic hazard in the Auckland volcanic field, New Zealand. Geosci. Rep. Shizuoka Univ., 1994, 20, 5–14

  • [36] Corbella H., El campo volcano-tectönico de Pali Aike, In: Haller M. ed,. Geologia y Recursos Naturales de Santa Cruz, Asociaciön Geologica Argentina, 2002, Buenos Aires, 285-302

  • [37] Mazzarini F., D’Orazio M., Spatial distribution of cones and satellite-detected lineaments in the Pali Aike Volcanic Field (southernmost Patagonia): insights into the tectonic setting of a Neogene rift system, J. Volcanol. Geoth. Res., 2003, 125, 291–305 http://dx.doi.org/10.1016/S0377-0273(03)00120-3

  • [38] Bruni S., D’Orazio M., Haller M.J., Innocenti F., Manetti P., Pecskay Z., Tonarini S., Time-evolution of magma sources in a continental back-arc setting: the Cenozoic basalts from Sierra de San Bernardo (Patagonia, Chubut, Argentina), Geol. Mag., 2008, 145, 714–732 http://dx.doi.org/10.1017/S0016756808004949

  • [39] Massaferro G.I., Haller M.J., D’Orazio M., Alric V.I., Sub-recent volcanism in Northern Patagonia: A tectonomagmatic approach, J. Volcanol. Geoth. Res., 2006, 155, 227–243 http://dx.doi.org/10.1016/j.jvolgeores.2006.02.002

  • [40] D’Orazio M., Innocenti F., Manetti P., Haller M.J., Di Vincenzo G., Tonarini S., The Late Pliocene mafic lavas from the Camusu Aike volcanic field (similar to 50 degrees S, Argentina): Evidence for geochemical variability in slab window magmatism, J. S. Am. Earth Sci., 2005, 18, 107–124 http://dx.doi.org/10.1016/j.jsames.2004.10.001

  • [41] D’Orazio M., Innocenti F., Manetti P., Tamponi M., Tonarini S., Gonzalez-Ferran O., Lahsen A., Omarini R., The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (similar to 45 degrees S, Chile), J. S. Am. Earth Sci., 2003, 16, 219–242 http://dx.doi.org/10.1016/S0895-9811(03)00063-4

  • [42] D’Orazio M., Agostini S., Innocenti F., Haller M.J., Manetti P., Mazzarini F., Slab window-related magmatism from southernmost South America: the Late Miocene mafic volcanics from the Estancia Glencross area (similar to 52 degrees S, Argentina-Chile), Lithos, 2001, 57, 67–89 http://dx.doi.org/10.1016/S0024-4937(01)00040-8

  • [43] D’Orazio M., Agostini S., Mazzarini F., Innocenti F., Manetti P., Haller M.J., Lahsen A., The Palil Aike Volcanic Field, Patagonia: slab-window magmatism near the tip of South America. Tectonophysics, 2000, 321, 407–427 http://dx.doi.org/10.1016/S0040-1951(00)00082-2

  • [44] De Ignacio C., Lopez I., Oyarzun R., Marquez A., The northern Patagonia Somuncura plateau basalts: a product of slab-induced, shallow asthenospheric upwelling? Terra Nova, 2001, 13, 117–121 http://dx.doi.org/10.1046/j.1365-3121.2001.00326.x

  • [45] Haller M.J., Németh K., Architecture and pyroclas-tic succession of a small Quaternary (?) maar in the Pali Aike Volkanic Field, Santa Cruz, Argentina, Zeitschrift der deutschen geologischen Gesellschaft, 2006, 157, 467–476 http://dx.doi.org/10.1127/1860-1804/2006/0157-0467

  • [46] Ross P.S., Delpit S., Haller M.J., Németh K., Corbella H., Influence of the substrate on maar-diatreme volcanoes — an example of a mixed setting from the Pali Aike volcanic field, Argentina, J. Volcanol. Geoth. Res., 2010, (in press)

  • [47] Fejfar O., Heinrich W.D., Importance of two sites of fossil vertebrates, Ivanovce and Hajnacka, for mammalian paleontology in European Pliocene and Early Pleistocene: present stage of knowledge and problems, Vestnik Ustredniho Ustavu Geologického, 1985, 60, 213–224

  • [48] Hably L., Kvacek Z., Pliocene mesophytic forests surrounding crater lakes in western Hungary. Revi. Palaeobot. Palyn., 1998, 101, 257–269

  • [49] Kvacek Z., Hably L., Szakmány G., Additions to the Pliocene flora of Gérce (Western Hungary). Földtani Közlöny (Bulletin of the Hungarian Geological Society), Budapest, 1994, 124, 69–87

  • [50] Fischer O., Hably L., Pliocene flora from the alginite at Gérce. Ann. Hist.-Nat. Mus. Natl. Hungary, 1991, 83, 25–47

  • [51] Kordos L., Hajós M., Müller P., Nagy E., Environmental change and ecostratigraphy in the Carpathian Basin, Annales Instituti Geologici Publici Hungarici, 1987, 70, 377–391

  • [52] Kereszturi G., Németh K., Csillag G., Kovács, J., Balogh, K., The role of external environmental factors in changing eruption styles of monogenetic volcanoes in a Pliocene continental volcanic field in western Hungary. J. Volcanol. Geoth. Res., 2010, (in press)

  • [53] Mayr C., Lucke A., Maidana N.I., Wille M., Haberzettl T., Corbella H., Ohlendorf C., Schabitz F., et al, Isotopic fingerprints on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina) reflect environmental changes during the last 16,000 years. J. Paleolimnol., 2009, 42, 81–102 http://dx.doi.org/10.1007/s10933-008-9249-8

  • [54] Anselmetti F.S., Ariztegui D., De Batist M., Gebhardt A.C., Haberzettl T., Niessen F., Ohlendorf C., Zolitschka B., Environmental history of southern Patagonia unravelled by the seismic stratigraphy of Laguna Potrok Aike, Sedimentology, 2009, 56, 873–892 http://dx.doi.org/10.1111/j.1365-3091.2008.01002.x

  • [55] Haberzettl T., Kuck B., Wulf S., Anselmetti F., Ariztegui D., Corbella H., Fey M., Janssen S., et al., Hydrological variability in southeastern Patagonia and explosive volcanic activity in the southern Andean Cordillera during Oxygen Isotope Stage 3 and the Holocene inferred from lake sediments of Laguna Potrok Aike, Argentina. Palaeo. Palaeo. Palaeo., 2008, 259, 213–229

  • [56] Chen Y., Zhang Y.X., Graham D., Su S.G., Deng J.F., Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China, Lithos, 2007, 96, 108–126 http://dx.doi.org/10.1016/j.lithos.2006.09.015

  • [57] Sohn Y.K., Park K.H., Phreatomagmatic volcanoes of Jeju Island, Korea. IAVCEI-CEV-CVS Field Workshop, Jeju Island, Korea, November 13-17, 2007. Jeju Special Self-Governing Province, Jeju, Korea, 2007

  • [58] Hamdy A.M., Park P.H., Lim H.C., Park K.D., Present-day relative displacements between the Jeju Island and the Korean peninsula as seen from GPS observations, Earth Planets Space, 2004, 56, 927–931

  • [59] Hamdy A.M., Park P.H., Jo B.G., Preliminary crustal movement study around the Honam shear zone and Okchon Belt (South Korea) using GPS observations, Geosci. J., 2004, 8, 109–112 http://dx.doi.org/10.1007/BF02910284

  • [60] Jin S.G., Park P.H., Zhu W.Y., Micro-plate tectonics and kinematics in Northeast Asia inferred from a dense set of GPS observations. Earth Planet. Sci. Lett., 2007, 257, 486–496 http://dx.doi.org/10.1016/j.epsl.2007.03.011

  • [61] Koh J.S., Yun S.H., Kang S.S., Petrology of the volcanic rocks in the Paekrogdam Crater area, Mt. Halla, Jeju Island, Journal of the Petrological Society of Korea, 2003, 12, 1–15

  • [62] Kang S., Benthic foraminiferal biostratigraphy and paleoenvironments of the Seogwipo Formation, Jeju Island, Korea, Journal ofthe Paleontological Society of Korea, 2003, 19, 63–153

  • [63] Németh K., Martin U., Harangi S., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geoth. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-2

  • [64] Won J.H., Lee J.Y., Kim J.W., Koh G.W., Groundwater occurrence on Jeju Island, Korea, Hydrogeol. J., 2006, 14, 532–547

  • [65] Tatsumi Y., Shukuno H., Yoshikawa M., Chang Q., Sato K., Lee M.W., The petrology and geochemistry of volcanic rocks on Jeju Island: plume magmatism along the Asian continental margin. J. Petrol., 2005, 46, 523–553 http://dx.doi.org/10.1093/petrology/egh087

  • [66] Sohn Y.K., Park K.H., Composite tuff ring/cone complexes in Jeju Island, Korea: possible consequences of substrate collapse and vent migration, J. Volcanol. Geoth. Res., 2005, 141, 157–175 http://dx.doi.org/10.1016/j.jvolgeores.2004.10.003

  • [67] Wijbrans J., Németh K., Martin U., Balogh K., Ar40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geoth. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.009

  • [68] White J.D.L., McClintock M.K., Immense vent complex marks flood-basalt eruption in a wet, failed rift: Coombs Hills, Antarctica, Geology, 2001, 29, 935–938 http://dx.doi.org/10.1130/0091-7613(2001)029<0935:IVCMFB>2.0.CO;2

  • [69] Lorenz V., Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments. Geolines, 2003, 15, 72–83

  • [70] Lorenz, V., Suhr, P., Goth, K., Maar-Diatrem-Vulkanismus á€$ Ursachen und Folgen. Die Gut-tauer Vulkangruppe in Ostsachsen als Beispiel für die komplexen Zusammenhänge (Maar-diatreme volcanism á€$ causes and consequences. The Guttau Volcano Group ineastern Saxony as an example for the complex processes and relationships), Zeitschriftfür Geologische Wissenschaften (Journal for the Geological Sciences) — ISSN 0303-4534., Berlin, 2003, 31, 267–312

  • [71] Lorenz V., Syn- and post-eruptive processes ofmaardiatreme volcanoes and their relevance to the ac-cumulation of post-eruptive maar crater sediments, Földtani Kutatás (Quaterly Journals of the Geological Survey of Hungary), Budapest, 2003, 40, 13–22.

  • [72] Skilling I.P., White J.D.L., McPhie J., Peperite: a review of magma-sediment mingling. J. Volcanol. Geoth. Res., 2002, 114, 1–17 http://dx.doi.org/10.1016/S0377-0273(01)00278-5

  • [73] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geoth. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.010

  • [74] Busby-Spera C.J., White J.D.L., Variation in peperite textures associated with differing host-sediment properties, Bull. Volcanol., 1987, 49, 765–775 http://dx.doi.org/10.1007/BF01079827

  • [75] Balogh K., Németh K., Evidence for the neogene small-volume intracontinental volcanism in western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex, Geol. Carpath., 2005, 56, 91–99

  • [76] Balogh K., Árva-Sós E., Pécskay Z., Ravasz- Baranyai L., K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary, Acta Mineralogica et Petrographica, Szeged, 1986, 28, 75–94

  • [77] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 281–301

  • [78] Budai T., Csillag G., A Balaton-felvidék földtana: magyarázó a Balaton-felvidék földtani térképéhez, 1:50 000 (Geology of the Balaton Highland: explanatory booklet for the geology map of the Balaton Highland, scale 1:50 000), In: Brezsnyánszky K. (Ed.), Occasional Papers of the Geological Institute of Hungary, 197, Geological Institute of Hungary, Budapest, 1999

  • [79] Németh K., Martin U., Magyar I., Field guide to Pliocene phreatomagmatic volcanoes along the Raba Fault Zone, Western Hungary. International Union of Geological Sciences — Subcommission on Neo gene Stratigraphy: Regional Committee on Mediterranean Neogene Stratigraphy — “Patterns and Processes in the Neogene of the Mediterranean Region, 2005

  • [80] Magyar I., Geary D.H., Muller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe. Palaeogeogr. Palaeocl., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-2

  • [81] Sacchi M., Horváth F., Magyar I., Müller P., Problems and progress in establishing a Late Neogene Chronostratigraphy for the Central Paratethys, Neogene Newsletter, Padova, 1997, 4, 37–46

  • [82] Sacchi M., Horváth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental cord; a case study from thelate Miocene of the western Pannonlan Basin, Hungary, In: Durand B., Jollvet L., Horvath F., Ranne M., (eds.), The Mediterranean basins;Tertiary extension within the Alpine Orogen., 1999, GeoLoglcaL Society of London, London, 357–390

  • [83] Sacchi M., Horvath F., Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys). In: Cloetingh S.A.P.L., Horvath F., Bada G., and Lankreijer A.C. (Eds.), Neotectonics and surface processes: the Pannonian Basin and Alpine/Carpathian System, Stephan Mueller Special Publication Series, 2002, 79-94

  • [84] Kereszturi G., Csillag G., Németh K., Sebe K., BaLogh K., Jager V., Volcanic architecture, eruption mechanism and Landform evolution of a Pliocene intracontinental basaLtic polycycLic monogenetic volcano from the Bakony- Balaton Highland VoLcanic Field, Hungary, Cent. Eur. J. Geosc., 2010, (in press)

  • [85] Fisher R.V., Schmincke H.U., Pyroclastic Rocks, 1984, Springer, Heidelberg

  • [86] Valentine G.A., Gregg T.K.P., Continental basaltic volcanoes — Processes and problems, J. Volcanol. Geoth. Res., 2008, 177, 857–873 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.050

  • [87] Lorenz V., McBirney A.R., Williams H., An investigation of volcanic depressions. Part III. Maars, tuffrings, tuff-cones and diatremes, NASA Progress Report (NGR — 38-003,012). 1970, Houston, Texas: CLearinghouse for Federal Scientific and Technical Information, SpringfieLd

  • [88] Waters A.C., Fisher R.V., Maar volcanoes, In: GiLmour E.H. and Stradling D. (Eds.), Proceedings of the 2nd Columbia River Basalt Symposium, 1970, Eastern Washington State College Press: Cheney Washington, 157–170

  • [89] Keating G.N., VaLentine G.A., Krier D.J., Perry F.V., Shallow pLumbing systems for small-volume basaltic volcanoes, Bull. Volcanol., 2008, DOI 10.1007/s00445-007-0154-1

  • [90] Kienle J., Kyle P.R., Self S., Motyka R.J., Lorenz V., Uninrek Maars, Alaska, 1. April 1977 eruption sequence, petroLogy, and tectonic settings, J. Geophys. Res., 1980, 7, 11–37

  • [91] Self S., Kienle J., Huot J.P., Ukinrek Maars, Alaska 2. Deposits and formation of the 1977 craters, J. Volcanol. Geoth. Res., 1980, 7, 39–65 http://dx.doi.org/10.1016/0377-0273(80)90019-0

  • [92] Müller G., Veyl G., The birth of Nilahue, a new maar type volcano at Rininahue, Chile. In: GarcAoea Rojas A. (Ed.), Congreso Geologico InternacionaL, 195, Seccio I — Vulcanologia del Cenozoico Mexico D.F., 375-396

  • [93] Wohletz K.H., Mechanisms of hydrovoLcanic pyroclast formation: grain-size, scanning eLectron microscopy, and experimental studies, J. Volcanol. Geoth. Res., 1983, 17, 31–63 http://dx.doi.org/10.1016/0377-0273(83)90061-6

  • [94] Sheridan M.F., WohLetz K.H., Hydrovolcanism — Basic considerations and review, J. Volcanol. Geoth. Res., 1983, 17, 1–29 http://dx.doi.org/10.1016/0377-0273(83)90060-4

  • [95] Wohletz K.H., McQueen R.G., Experimental studies in hydromagmatic volcanism in Studies in Geophysics: Explosive volcanism: Inception, evolution and hazards. 1984, National Academy Press, Washington

  • [96] Wohletz K.H., Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies. Bull. Volcanol., 1986, 48, 245–264 http://dx.doi.org/10.1007/BF01081754

  • [97] WohLetz K., Heiken G., Volcanology and geothermal energy, 1992, University of Cakifornia Press, Berkeley

  • [98] Keating G.N., Valentine G.A., Krier D.J., Perry F.V., Shallow plumbing systems for small-volume basaltic volcanoes, Bull. Volcanol., 2008, 70, 563–582 http://dx.doi.org/10.1007/s00445-007-0154-1

  • [99] Funiciello R., Giordano G., De Rita D., The ALbano maar Lake (Colli Albani VoLcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events, J. VoLcanoL. Geoth. Res., 2003, 123, 43–61 http://dx.doi.org/10.1016/S0377-0273(03)00027-1

  • [100] Valentine G.A., Krier D.J., Perry F.V., Heiken G., Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano., J. Volcanol. Geoth. Res. 2007, 161, 57–80 http://dx.doi.org/10.1016/j.jvolgeores.2006.11.003

  • [101] BaLogh K., Jámbor A., Partényi Z., Ravaszné Baranyai L., Solti G., A dunántúli bazaltok K/Ar radiometrikus kora (K/Ar radigenic age of Transdanubian basaLts), (in Hungarian with English summary), MÁFI Évi Jelentése 1980-ról (Annual Report of the GeoLogicaL Institute of Hungary), 1982, 243-259

  • [102] Brenna M., Cronin S.J., Smith I.E.M., Sohn Y.-K., Németh K., Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea, Contrib. Mineral. Petr., 2010, DOI 10.1007/s00410-010-0515-1

  • [103] Németh K., Martin U., Csillag G., Calculation of ero sion rates based on remnants of monogenetic alkaline basaltic volcanoes in the Bakony-Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age, Geolines, 2003, 15, 93–97

  • [104] Lorenz V., On the formation of Maars, Bull. Volcanol., 1973, 37, 183–204 http://dx.doi.org/10.1007/BF02597130

  • [105] Lorenz V., Phreatomagmatism and its relevance. Chem. Geol., 1987, 62, 149–156 http://dx.doi.org/10.1016/0009-2541(87)90066-0

OPEN ACCESS

Journal + Issues

Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an international, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Geology, Geophysics, Geography, Geomicrobiology, Geotourism, Oceanography and Hydrology, Glaciology, Atmospheric Sciences, Speleology, Volcanology, Soil Science, Geoinformatics, Geostatistics. The journal is published in the Open Access model.

Search