Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary

Gábor Kereszturi 1 , Gábor Csillag 2 , Károly Németh 3 , Krisztina Sebe 4 , Kadosa Balogh 5 ,  und Viktor Jáger 6
  • 1 Department of Geology and Mineral Deposits, University of Miskolc, H-3515, Miskolc-Egyetemváros, Hungary
  • 2 Department of Geological Research, Geological Institute of Hungary, Stefánia út 14, H-1143, Budapest, Hungary
  • 3 Volcanic Risk Solutions, Institute of Natural Resources, Massey University, Private Bag 11 222, Palmerston North, New Zealand
  • 4 Department of Geology, University of Pécs, Ifjúság ú. 6, 7624 Pécs, Hungary
  • 5 Institute of Nuclear Research of the Hungarian Academy of Sciences, Bem-tér 18/C, H-4026, Debrecen, Hungary
  • 6 Department of Mineralogy, Herman Otto Museum, Kossuth u. 13, H-3525, Miskolc, Hungary

Abstract

Bondoró Volcanic Complex (shortly Bondoró) is one of the most complex eruption centre of Bakony-Balaton Highland Volcanic Field, which made up from basaltic pyroclastics sequences, a capping confined lava field (~4 km2) and an additional scoria cone. Here we document and describe the main evolutional phases of the Bondoró on the basis of facies analysis, drill core descriptions and geomorphic studies and provide a general model for this complex monogenetic volcano. Based on the distinguished 13 individual volcanic facies, we infer that the eruption history of Bondoró contained several stages including initial phreatomagmatic eruptions, Strombolian-type scoria cones forming as well as effusive phases. The existing and newly obtained K-Ar radiometric data have confirmed that the entire formation of the Bondoró volcano finished at about 2.3 Ma ago, and the time of its onset cannot be older than 3.8 Ma. Still K-Ar ages on neighbouring formations (e.g. Kab-hegy, Agár-teto) do not exclude a long-lasting eruptive period with multiple eruptions and potential rejuvenation of volcanic activity in the same place indicating stable melt production beneath this location. The prolonged volcanic activity and the complex volcanic facies architecture of Bondoró suggest that this volcano is a polycyclic volcano, composed of at least two monogenetic volcanoes formed more or less in the same place, each erupted through distinct, but short lived eruption episodes. The total estimated eruption volume, the volcanic facies characteristics and geomorphology also suggests that Bondoró is rather a small-volume polycyclic basaltic volcano than a polygenetic one and can be interpreted as a nested monogenetic volcanic complex with multiple eruption episodes. It seems that Bondoró is rather a “rule” than an “exception” in regard of its polycyclic nature not only among the volcanoes of the Bakony-Balaton Highland Volcanic Field but also in the Neogene basaltic volcanoes of the Pannonian Basin.

Falls das inline PDF nicht korrekt dargestellt ist, können Sie das PDF hier herunterladen.

  • [1] [1] Walker G.P.L., Basaltic volcanoes and volcanic systems. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds.), Encyclopedia of Volcanoes. Academic Press, New York, 2000

  • [2] [2] Vespermann D., Schmincke H.-U., Scoria cones and tuff rings. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds.), Encyclopedia of Volcanoes, Academic Press, New York, 2000

  • [3] [3] Valentine G.A., Gregg T.K.P., Continental basaltic volcanoes — Processes and problems, J. Volcanol. Geotherm. Res., 2008, 177, 857–873 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.050

  • [4] [4] De Benedetti A.A., Funiciello F., Giordano G., Diano G., Caprilli E., Paterne M., Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy), J. Volcanol. Geotherm. Res., 2009, 176, 387–406 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.035

  • [5] [5] Pioli L., Erlund E., Johnson E., Cashman K., Wallace P., Rosi M., Delgado Granados H., Explosive, dynamics of violent Strombolian eruptions: The eruption of Paricutin Volcano 1943-1952 (Mexico), Earth Planet. Sci. Lett., 2008, 271, 359–368 http://dx.doi.org/10.1016/j.epsl.2008.04.026

  • [6] [6] Gisbert G., Gimeno D., Fernandez-Turiel J.-L., Eruptive mechanisms of the Puig De La Garrinada volcano (Olot, Garrotxa volcanic field, Northeastern Spain): A methodological study based on proximal pyroclastic deposits, J. Volcanol. Geotherm. Res., 2009, 180, 259–276 http://dx.doi.org/10.1016/j.jvolgeores.2008.12.018

  • [7] [7] Pardo N., Macias J.L., Giordano G., Cianfarra P., Ramon Avellan D., Bellatreccia F., The ≈1245 yr BP Asososca maar eruption: The youngest event along the Nejapa-Miraflores volcanic fault, Western Managua, Nicaragua, J. Volcanol. Geotherm. Res., 2009, 184, 292–312 http://dx.doi.org/10.1016/j.jvolgeores.2009.04.006

  • [8] [8] Clarke H., Troll V.R., Carracedo J.C., Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montana Los Erales, Tenerife, Canary Islands, J. Volcanol. Geotherm. Res., 2009, 180, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2008.11.014

  • [9] [9] Brand B.D., Clarke A.B., The architecture, eruptive history, and evolution of the Table Rock Complex, Oregon: From a Surtseyan to an energetic maar eruption, J. Volcanol. Geotherm. Res., 2009, 180, 203–224 http://dx.doi.org/10.1016/j.jvolgeores.2008.10.011

  • [10] [10] Di Traglia F., Cimarelli C., de Rita D., Gimeno Torrente D., Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberain Peninsula), J. Volcanol. Geotherm. Res., 2009, 180, 89–109 http://dx.doi.org/10.1016/j.jvolgeores.2008.10.020

  • [11] [11] Parfitt E.A., A discussion of the mechanisms of explosive basaltic eruptions, J. Volcanol. Geotherm. Res., 2004, 134, 77–107 http://dx.doi.org/10.1016/j.jvolgeores.2004.01.002

  • [12] [12] Parfitt E.A., Wilson L., Explosive volcanic eruptions -IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity, Geophys. J. Int., 1995, 121, 226–232 http://dx.doi.org/10.1111/j.1365-246X.1995.tb03523.x

  • [13] [13] Németh K., Cronin S.J., Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu, J. Volcanol. Geotherm. Res., 2009, 180, 246–258 http://dx.doi.org/10.1016/j.jvolgeores.2008.08.011

  • [14] [14] Risso C., Németh K., Combina A.M., Nullo F., Drosina M., The role of phreatomagmatism in a Plio-Pleisotcene high-density scoria cone field: llancanelo Volcanic Field, Argentina, J. Volcanol. Geotherm. Res., 2008, 168, 61–86 http://dx.doi.org/10.1016/j.jvolgeores.2007.08.007

  • [15] [15] Büchel G., Negendank J.F.W., Wuttke M., Viereck L., Quaternary and Tertiary Eifel maars, Enspel (Westerwald) and Laacher See: Volcanology, sedimentology and hydrogeology. In: Neuffer F.O., Lutz H. (Eds.), Field trip guidebook. International Maar Conference, (17-27 August 2000, Daun, Germany), 2000

  • [16] [16] Valentine G.A., Perry F.V., Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA), Earth Planet. Sci. Lett., 2007, 261, 201–216 http://dx.doi.org/10.1016/j.epsl.2007.06.029

  • [17] [17] Németh K., Goth K., Martin U., Csillag G., Suhr P., Reconstructing paleoenvironment, eruption mechanism and paleomorphology ofthe Pliocene Pula maar, (Hungary), J. Volcanol. Geotherm. Res., 2008, 177, 441–456 http://dx.doi.org/10.1016/j.jvolgeores.2008.06.010

  • [18] [18] Carn S.A., The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards, J. Volcanol. Geotherm. Res., 2000, 95, 81–108 http://dx.doi.org/10.1016/S0377-0273(99)00114-6

  • [19] [19] Németh K., White J.D.L., Reconstructing eruption processes of a Miocene monogentic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand, J. Volcanol. Geotherm. Res., 2003, 124, 1–21. http://dx.doi.org/10.1016/S0377-0273(03)00042-8

  • [20] [20] Franz G., Breitkreuz C., Coyle D.A., El Hur B., Heinrich W., Paulick H., Pudlo D., Smith R. et al., The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan), J. Afr. Earth Sci., 1997, 25, 263–291 http://dx.doi.org/10.1016/S0899-5362(97)00103-6

  • [21] [21] Foshag W.F., Gonzalez J.R., Birth and development of Paricutin volcano, Mexico Geological Survey Bulletin, 1956, 965-D, 355–487

  • [22] [22] Luhr J.F., Glass inclusions and melt volatile contents at Paricutin Volcano, Mexico, Contrib. Mineral. Petrol., 2001, 142, 261–283 http://dx.doi.org/10.1007/s004100100293

  • [23] [23] Funiciello R., Giordano G., De Rita D., The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events, J. Volcanol. Geotherm. Res., 2003, 123, 43–61 http://dx.doi.org/10.1016/S0377-0273(03)00027-1

  • [24] [24] Carrasco-Núñez G., Riggs, N.R., Polygenetic nature of a rhyolitic dome and implications for hazard assessment: Cerro Pizarro volcano, Mexico, J. Volcanol. Geotherm. Res., 2008, 171, 307–315 http://dx.doi.org/10.1016/j.jvolgeores.2007.12.002

  • [25] [25] Kereszturi G., Németh K., Controlling conditions of phreatomagmatic to magmatic fragmentation styles of Pliocene volcanoes of West-Hungary, In: Haller M.J., Massaferro G.I. (Eds.), 3rd International Maar Conference (14-17 April 2009, Malargüe, Mendoza, Argentine), 50-51

  • [26] [26] Wijbrans J., Németh K., Martin U., Balogh K., 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geotherm. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.009

  • [27] [27] Balogh K., Árva-Sós E., Pécskay Z., Ravasz-Baranyai L., K/Ar dating of post-sarmatian alkali basaltic rocks in Hungary, Acta Mineralogica Petrographica, 1986, 27, 75–93

  • [28] [28] Martin U., Németh K., Mio/Pliocene Phreatomagmatic Volcanism in the Western Pannonian Basin, Geol. Hung. Ser. Geol., 26, Budapest, 2004, 1–198 [29] Aubry M.P., Berggren W.A., Van Couvering J., McGowran B., Hilgen F., Steininger F., Lourens L., The Neogene and Quaternary: chronostratigraphic com-promise or non-overlapping magisteria?, Stratigraphy, 2009, 6, 1-16

  • [29] [30] Gibbard P., Cohen K.M., Global chronostratigraphical correlation table for the last 2.7 million years, Episodes, 2008, 31, 243–247

  • [30] [31] Németh K., Martin U., Csillag G., Calculation of erosion rates based on remnants of monogenetic alkaline basaltic volcanoes in the Bakony- Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age, Geolines, 2003, 15, 102–106

  • [31] [32] Budai T., Csillag G., Dudko A., Koloszár L., Geological map of Balaton Highland (1:50 000). In: Budai T., Csillag G. (Eds.), Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1: 50 000, Geological Institute of Hungary, 1999

  • [32] [33] Csillag G., Budai T., “Nagyvázsony lagoon”. In: Budai T., Csillag G. (Eds.), Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1: 50 000, Geological Institute of Hungary, 1999

  • [33] [34] Magyar I., Geary D.H., Müller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeog. Palaeoclimatol. Palaeoecol., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-2

  • [34] [35] Sacchi M., Horváth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental record: a case study from the Late Miocene of the western Pannonian Basin, Hungary. In: Durand B., Jolivet L., Horvath F., Seranne M. (Eds.), The Mediterranean Basins: Tertiary Exten-sion within the Alpine Orogen, Geological Society, London, Special Publications, 1999

  • [35] [36] Németh K., Martin U., Late Miocene paleogeomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Zeitschrift fr Geomorphologie, 1999, 43, 417–438

  • [36] [37] Martin U., Németh K., Auer A., Breitkreuz C., Csillag G., Depositional recorded of a pliocene nested multivent maar complex at Fekete-hegy, Pannonian Basin, Western Hungary, Geol. Carpath., 2002, 53, CD-version

  • [37] [38] Martin U., Auer A., Németh K., Breitkreuz C., Mio-Pliocene Phreatomagmatic Volcanism in a Fluvio-Lacustrine Basin in Western Hungary, GeoLines, 2003, 15, 93–97

  • [38] [39] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) „soft-substrate” and „hard-substrate” maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting, J. Volcanol. Geotherm. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.008

  • [39] [40] Balogh K., Petrography and K/Ar dating of Tertiary and Quaternary basaltic rocks in Hungary, Anuarul Institutului de Geologie si Geofizica, 1983, 61, 365–373

  • [40] [41] Jámbor Á., A Dunántúli-középhegység pannóniai képzödményei, A Magyar Állami Földtani Intézet évkönyve, 57, 1980 (in Hungarian)

  • [41] [42] Fitch F.J., Miller, J.A., Hooker P.J., Single whole rock K-Ar isochrons, Geol. Mag., 1976, 113, 1–10 http://dx.doi.org/10.1017/S0016756800042965

  • [42] [43] Balogh, K., Vass, D., and Ravasz-Baranyai, L., K/Ar ages in the case ofcorrelated K and excess Ar concentrations: a case study for the alkaline olivine basalt of Somoska, Slovak-Hungarian Frontier, Geol. Carpath., 1994, 45, 97–102

  • [43] [44] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geol. Hung., 2001, 44, 281–299 or[45] Jugovics L., A Déli Bakony és a Balatonfelvidék bazaltterületei, A Magyar Állami Földtani Intézet Évi Jelentése 1953-ról, 1954, 65-88 (in Hungarian)

  • [44] [46] Jámbor Á., A monostorapáti Mat-1 sz. fúrás rétegsora, Magyar Bányászati és Földtani Hivatal Adattár, 1973, 325-334 (in Hungarian)

  • [45] [47] Jámbor Á., A monostorapáti Mat-2 sz. fúrás rétegsora, Magyar Bányászati és Földtani Hivatal Adattár, 1973, 335-342 (in Hungarian)

  • [46] [48] Fisher R.V., Schmincke H.-U., Pyroclastic Rocks, Berlin, 1984

  • [47] [49] Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution ofmaar-diatreme volcanoes, J. Volcanol. Geotherm. Res., 2007, 159, 4–32 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.019

  • [48] [50] Lorenz V., On the growth of maar and diatremes and its relevance to the formation of tuff rings, Bull. Volcanol., 1986, 48, 265–274 http://dx.doi.org/10.1007/BF01081755

  • [49] [51] Chough S.K. and Sohn Y.K., Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea, Sedimentology, 1990, 37, 1115–1135 http://dx.doi.org/10.1111/j.1365-3091.1990.tb01849.x

  • [50] [52] Walker G.P.L., Characteristics of dune-bedded py roclastic surge bedsets J. Volcanol. Geotherm. Res., 1984, 20, 281–296 http://dx.doi.org/10.1016/0377-0273(84)90044-1

  • [51] [53] Sheridan M.F., Wohletz K.H., Hydrovolcanic Explosions: The Systematics of Water-Pyroclast Equilibration, Science, 1981, 212, 1387–1389 http://dx.doi.org/10.1126/science.212.4501.1387

  • [52] [54] Vazquez J.A., Ort M.H., Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA J. Volcanol. Geotherm. Res., 2006, 154, 222–236 http://dx.doi.org/10.1016/j.jvolgeores.2006.01.003

  • [53] [55] Sohn Y.K., Chough S.K., Depositional processes ofthe Suwolbong tuff ring, Cheju Island (Korea), Sedimentology, 1989, 36, 837–855 http://dx.doi.org/10.1111/j.1365-3091.1989.tb01749.x

  • [54] [56] Sohn Y.K., Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea, Geol. Soc. Am. Bull., 1996, 108, 1199–1211 http://dx.doi.org/10.1130/0016-7606(1996)108<1199:HPFBTR>2.3.CO;2

  • [55] [57] White J.D.L., The depositional record of small, mono genetic volcanoes within terrestrial basins. In: Fisher, E.V. and Smith, G.A. (Eds.), Sedimentation in Volcanic Settings, 1991

  • [56] [58] Carrasco-Núnez G., Ort M.H., Romero C., Evolution and hydrological conditions of a maar volcano (Atex-cac crater, Eastern Mexico), J. Volcanol. Geotherm. Res., 2007, 159, 179–197 http://dx.doi.org/10.1016/j.jvolgeores.2006.07.001

  • [57] [59] Leahy K., Discrimination of reworked pyroclastics from primary tephra-fall tuffs: a case study using kimberlites of Fort a la Corne, Saskatchewan, Canada, Bull. Volcanol., 1997, 59, 65–71 http://dx.doi.org/10.1007/s004450050175

  • [58] [60] Houghton B.F., Hackett W.R., Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: A complex interaction between external water and rising basaltic magma, J. Volcanol. Geotherm. Res., 1984, 21, 207–231 http://dx.doi.org/10.1016/0377-0273(84)90023-4

  • [59] [61] Houghton B.F. and Schmincke H.-U., Mixed deposits of simultaneous strombolian and phreatomagmatic volcanism: Rothenberg volcano, East Eifel Volcanic Field, J. Volcanol. Geotherm. Res., 1986, 30, 117–130 http://dx.doi.org/10.1016/0377-0273(86)90069-7

  • [60] [62] Valentine G.A., Krier D., Perry F.V., Heiken G., Scoria cone construction mechanisms, Lathrop Wells volcano, southern Nevada, USA, Geology, 2005, 33, 629–632 http://dx.doi.org/10.1130/G21459.1

  • [61] [63] Sumner J., Blake S., Matela R., Wolff J., Spatter J. Volcanol. Geotherm. Res., 2005, 142, 49–65 http://dx.doi.org/10.1016/j.jvolgeores.2004.10.013

  • [62] [64] Bertotto G.W., Bjerg E.A., Cingolani C.A., Hawai-ian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina, J. Volcanol. Geotherm. Res., 2006, 158, 430–444 http://dx.doi.org/10.1016/j.jvolgeores.2006.08.001

  • [63] [65] Yamamoto H., The Mode of Lava Outflow from Cinder Cones in the Ojika-Jima Monogenetic Volcano Group, Bulletin of the Volcanological Society of Japan, 2003, 48, 11–25

  • [64] [66] Inbar M., Risso C., A morphological and morphometric analysis of a high density cinder cone volcanic field. — Payun Matru, south-central Andes, Argentina, Z. Geomorphol., 2001, 45, 321–343

  • [65] [67] Smith G.A., Grubensky M.J., Geissman J.W., Nature and origin of cone-forming volcanic breccias in the Te Herenga Formation, Ruapehu, New Zealand, Bull. Volcanol., 1999, 61, 64–82 http://dx.doi.org/10.1007/s004450050263

  • [66] [68] Fisher R.V., Classification of volcanic breccias, Geol. Soc. Am. Bull., 1960, 71, 973–981 http://dx.doi.org/10.1130/0016-7606(1960)71[973:COVB]2.0.CO;2

  • [67] [69] Sparks R.S.J., Stasiuk M.V., Gardeweg M., Swanson D.A., Welded breccias in andesite lavas, J. Geol. Soc., 2000, 150, 897–902 http://dx.doi.org/10.1144/gsjgs.150.5.0897

  • [68] [70] Grubensky M.J., Smith G.A., Geissman J.W., Field and paleomagnetic characterization of lithic and sco-riaceous breccias next term at Pleistocene Broken Top volcano, Oregon Cascades J. Volcanol. Geotherm. Res., 1998, 83, 93–114 http://dx.doi.org/10.1016/S0377-0273(98)00006-7

  • [69] [71] Cas R., Wright J., Volcanic Successions, Modern and Ancient., Allen and Unwin, London — Boston — Sydney — Wellington, 1987

  • [70] [72] McPhie J., Doyle M., Allen R., Volcanic Textures. A guide to the interpretation of textures in volcanic rocks., Tasmania, 1993

  • [71] [73] White J.D.L., Houghton B.F., Primary volcaniclastic rocks, Geology, 2006, 34, 677–680 http://dx.doi.org/10.1130/G22346.1

  • [72] [74] Skilling I.P., White J.D.L., McPhie J., Peperite: a review of magma-sediment mingling, J. Volcanol. Geotherm. Res., 2002, 114, 1–17 http://dx.doi.org/10.1016/S0377-0273(01)00278-5

  • [73] [75] White J.D.L., McPhie J., Skilling I., Peperite: a useful genetic term, Bull. Volcanol., 2000, 62, 65–66 http://dx.doi.org/10.1007/s004450050293

  • [74] [76] Lavine A., Morphology of a crater-filling lava lake margin, The Peninsula tuff cone, Tule Lake National Wildlife Refuge, California: implications for formation of peperite textures, J. Volcanol. Geotherm. Res., 2002, 114, 147–163 http://dx.doi.org/10.1016/S0377-0273(01)00285-2

  • [75] [77] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geotherm. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.010

  • [76] [78] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring hat developed in a fluviolacustrine basin: Kissomlyö volcano (western Hungary), J. Volcanol. Geotherm. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.019

  • [77] [79] van Dam J.A., Geographic and temporal patterns in the late Neogene (12-3 Ma) aridification of Europe: The use ofsmall mammals as paleoprecipitation proxies, Palaeogeog. Palaeoclimatol. Palaeoecol., 2006, 238, 190–218 http://dx.doi.org/10.1016/j.palaeo.2006.03.025

  • [78] [80] Eronen J.T., Rook L., The Mio-Pliocene European primate fossil record: dynamics and habitat tracking, J. Hum. Evol., 2004, 47, 323–341 http://dx.doi.org/10.1016/j.jhevol.2004.08.003

  • [79] [81] Lorenzoni P., Mirabella A., Bidini D., Lulli L., Soil genesis on trachytic and leucititic lavas of Cimini volcanic complex (Latium, Italy), Geoderma, 1995, 68, 79–99 http://dx.doi.org/10.1016/0016-7061(95)00027-L

  • [80] [82] Tucker D.S. Scott K.M., Structures and facies associated with the flow of subaerial basaltic lava into a deep freshwater lake: The Sulphur Creek lava flow, North Cascades, Washington, J. Volcanol. Geotherm. Res., 2009, 185, 311–322 http://dx.doi.org/10.1016/j.jvolgeores.2008.11.028

  • [81] [83] Waichel B.L., Scherer C.M.S., Frank H.T., Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects J. Volcanol. Geotherm. Res., 2008, 171, 59–72 http://dx.doi.org/10.1016/j.jvolgeores.2007.11.004

  • [82] [84] Csillag G., Káli-medence és környékének geomorfolögiai szintjei, A Magyar Állami Földtani Intézet évi Jelentése 2004-röl, 2004, 95-110 (In Hungarian)

  • [83] [85] Csillag G., Németh K., Sebe K., Paleofelszínek és vulkánl szerkezetek kapcsolata a Balaton-felvldék és a Bakony területén, In: (Eds.), IV. Magyar Földrajzl Konferencla (14-15 November 2008, Debrecen, Hungary), 84-90 (in Hungarian)

  • [84] [86] Favalli M., Karátson D., Mazzarlnl F., Pareschl M.T., Boschl E., Morphometry of scoria cones located on a volcano flank: A case study from Mt. Etna (Italy), based on high-resolution LIDAR data, J. Volcanol. Geotherm. Res., 2009, 186, 320–330 http://dx.doi.org/10.1016/j.jvolgeores.2009.07.011

  • [85] [87] Németh K., Martin U., Harangl S., Miocene phreatomagmatlc volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geotherm. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-2

  • [86] [88] Zimanowski B., Wohletz K.H., Physics of phreatomag matism I., Terra Nostra, 2000, 6, 515–523

  • [87] [89] White J.D.L., Impure coolants and interaction dynamics of phreatomagmatic eruptions, J. Volcanol. Geotherm. Res., 1996, 74, 155–170 http://dx.doi.org/10.1016/S0377-0273(96)00061-3

  • [88] [90] Houghton B.F., Wilson C.J.N., Smith I.E.M., Shallowseated controls on styles of explosive basaltic volcanism: a case study from New Zealand, J. Volcanol. Geotherm. Res., 1999, 91, 97–120 http://dx.doi.org/10.1016/S0377-0273(99)00058-X

  • [89] [91] Keller J., Quaternary maar volcanism near Karapinar in centralAnatolia, Bull. Volcanol., 1973, 38, 378–396 http://dx.doi.org/10.1007/BF02599413

  • [90] [92] Aranda-Gómez J.J., Luhr J.F., Pier G., The La Brena-El Jagüey Maar Complex, Durango, México: I. Geological evolution, Bull. Volcanol., 1992, 54, 393–404 http://dx.doi.org/10.1007/BF00312321

  • [91] [93] Ort M.H., Carrasco-Núnez G., Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico, J. Volcanol. Geotherm. Res., 2009, 181, 67–77 http://dx.doi.org/10.1016/j.jvolgeores.2009.01.003

  • [92] [94] Büchel G., Lorenz V., Zum Alter des Maarvulkanismus der Westeifel, Neues Jahrbuch für Geologie, Paleontologie, Mineralogie, 1982, 163, 1–22

  • [93] [95] Lorenz V., Explosive volcanism of the West Eifel volcanic field, Germany. In: Kornprobat, J. (Eds.), Kimberlites I.: Kimberlites and related rocks, Elsevier, 1984

OPEN ACCESS

Zeitschrift + Hefte

Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an international, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Geology, Geophysics, Geography, Geomicrobiology, Geotourism, Oceanography and Hydrology, Glaciology, Atmospheric Sciences, Speleology, Volcanology, Soil Science, Geoinformatics, Geostatistics. The journal is published in the Open Access model.

Suche