Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access September 1, 2010

Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary

  • Gábor Kereszturi EMAIL logo , Gábor Csillag , Károly Németh , Krisztina Sebe , Kadosa Balogh and Viktor Jáger
From the journal Open Geosciences

Abstract

Bondoró Volcanic Complex (shortly Bondoró) is one of the most complex eruption centre of Bakony-Balaton Highland Volcanic Field, which made up from basaltic pyroclastics sequences, a capping confined lava field (~4 km2) and an additional scoria cone. Here we document and describe the main evolutional phases of the Bondoró on the basis of facies analysis, drill core descriptions and geomorphic studies and provide a general model for this complex monogenetic volcano. Based on the distinguished 13 individual volcanic facies, we infer that the eruption history of Bondoró contained several stages including initial phreatomagmatic eruptions, Strombolian-type scoria cones forming as well as effusive phases. The existing and newly obtained K-Ar radiometric data have confirmed that the entire formation of the Bondoró volcano finished at about 2.3 Ma ago, and the time of its onset cannot be older than 3.8 Ma. Still K-Ar ages on neighbouring formations (e.g. Kab-hegy, Agár-teto) do not exclude a long-lasting eruptive period with multiple eruptions and potential rejuvenation of volcanic activity in the same place indicating stable melt production beneath this location. The prolonged volcanic activity and the complex volcanic facies architecture of Bondoró suggest that this volcano is a polycyclic volcano, composed of at least two monogenetic volcanoes formed more or less in the same place, each erupted through distinct, but short lived eruption episodes. The total estimated eruption volume, the volcanic facies characteristics and geomorphology also suggests that Bondoró is rather a small-volume polycyclic basaltic volcano than a polygenetic one and can be interpreted as a nested monogenetic volcanic complex with multiple eruption episodes. It seems that Bondoró is rather a “rule” than an “exception” in regard of its polycyclic nature not only among the volcanoes of the Bakony-Balaton Highland Volcanic Field but also in the Neogene basaltic volcanoes of the Pannonian Basin.

[1] [1] Walker G.P.L., Basaltic volcanoes and volcanic systems. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds.), Encyclopedia of Volcanoes. Academic Press, New York, 2000 Search in Google Scholar

[2] [2] Vespermann D., Schmincke H.-U., Scoria cones and tuff rings. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds.), Encyclopedia of Volcanoes, Academic Press, New York, 2000 Search in Google Scholar

[3] [3] Valentine G.A., Gregg T.K.P., Continental basaltic volcanoes — Processes and problems, J. Volcanol. Geotherm. Res., 2008, 177, 857–873 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.05010.1016/j.jvolgeores.2008.01.050Search in Google Scholar

[4] [4] De Benedetti A.A., Funiciello F., Giordano G., Diano G., Caprilli E., Paterne M., Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy), J. Volcanol. Geotherm. Res., 2009, 176, 387–406 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.03510.1016/j.jvolgeores.2008.01.035Search in Google Scholar

[5] [5] Pioli L., Erlund E., Johnson E., Cashman K., Wallace P., Rosi M., Delgado Granados H., Explosive, dynamics of violent Strombolian eruptions: The eruption of Paricutin Volcano 1943-1952 (Mexico), Earth Planet. Sci. Lett., 2008, 271, 359–368 http://dx.doi.org/10.1016/j.epsl.2008.04.02610.1016/j.epsl.2008.04.026Search in Google Scholar

[6] [6] Gisbert G., Gimeno D., Fernandez-Turiel J.-L., Eruptive mechanisms of the Puig De La Garrinada volcano (Olot, Garrotxa volcanic field, Northeastern Spain): A methodological study based on proximal pyroclastic deposits, J. Volcanol. Geotherm. Res., 2009, 180, 259–276 http://dx.doi.org/10.1016/j.jvolgeores.2008.12.01810.1016/j.jvolgeores.2008.12.018Search in Google Scholar

[7] [7] Pardo N., Macias J.L., Giordano G., Cianfarra P., Ramon Avellan D., Bellatreccia F., The ≈1245 yr BP Asososca maar eruption: The youngest event along the Nejapa-Miraflores volcanic fault, Western Managua, Nicaragua, J. Volcanol. Geotherm. Res., 2009, 184, 292–312 http://dx.doi.org/10.1016/j.jvolgeores.2009.04.00610.1016/j.jvolgeores.2009.04.006Search in Google Scholar

[8] [8] Clarke H., Troll V.R., Carracedo J.C., Phreatomagmatic to Strombolian eruptive activity of basaltic cinder cones: Montana Los Erales, Tenerife, Canary Islands, J. Volcanol. Geotherm. Res., 2009, 180, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2008.11.01410.1016/j.jvolgeores.2008.11.014Search in Google Scholar

[9] [9] Brand B.D., Clarke A.B., The architecture, eruptive history, and evolution of the Table Rock Complex, Oregon: From a Surtseyan to an energetic maar eruption, J. Volcanol. Geotherm. Res., 2009, 180, 203–224 http://dx.doi.org/10.1016/j.jvolgeores.2008.10.01110.1016/j.jvolgeores.2008.10.011Search in Google Scholar

[10] [10] Di Traglia F., Cimarelli C., de Rita D., Gimeno Torrente D., Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberain Peninsula), J. Volcanol. Geotherm. Res., 2009, 180, 89–109 http://dx.doi.org/10.1016/j.jvolgeores.2008.10.02010.1016/j.jvolgeores.2008.10.020Search in Google Scholar

[11] [11] Parfitt E.A., A discussion of the mechanisms of explosive basaltic eruptions, J. Volcanol. Geotherm. Res., 2004, 134, 77–107 http://dx.doi.org/10.1016/j.jvolgeores.2004.01.00210.1016/j.jvolgeores.2004.01.002Search in Google Scholar

[12] [12] Parfitt E.A., Wilson L., Explosive volcanic eruptions -IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity, Geophys. J. Int., 1995, 121, 226–232 http://dx.doi.org/10.1111/j.1365-246X.1995.tb03523.x10.1111/j.1365-246X.1995.tb03523.xSearch in Google Scholar

[13] [13] Németh K., Cronin S.J., Phreatomagmatic volcanic hazards where rift-systems meet the sea, a study from Ambae Island, Vanuatu, J. Volcanol. Geotherm. Res., 2009, 180, 246–258 http://dx.doi.org/10.1016/j.jvolgeores.2008.08.01110.1016/j.jvolgeores.2008.08.011Search in Google Scholar

[14] [14] Risso C., Németh K., Combina A.M., Nullo F., Drosina M., The role of phreatomagmatism in a Plio-Pleisotcene high-density scoria cone field: llancanelo Volcanic Field, Argentina, J. Volcanol. Geotherm. Res., 2008, 168, 61–86 http://dx.doi.org/10.1016/j.jvolgeores.2007.08.00710.1016/j.jvolgeores.2007.08.007Search in Google Scholar

[15] [15] Büchel G., Negendank J.F.W., Wuttke M., Viereck L., Quaternary and Tertiary Eifel maars, Enspel (Westerwald) and Laacher See: Volcanology, sedimentology and hydrogeology. In: Neuffer F.O., Lutz H. (Eds.), Field trip guidebook. International Maar Conference, (17-27 August 2000, Daun, Germany), 2000 Search in Google Scholar

[16] [16] Valentine G.A., Perry F.V., Tectonically controlled, time-predictable basaltic volcanism from a lithospheric mantle source (central Basin and Range Province, USA), Earth Planet. Sci. Lett., 2007, 261, 201–216 http://dx.doi.org/10.1016/j.epsl.2007.06.02910.1016/j.epsl.2007.06.029Search in Google Scholar

[17] [17] Németh K., Goth K., Martin U., Csillag G., Suhr P., Reconstructing paleoenvironment, eruption mechanism and paleomorphology ofthe Pliocene Pula maar, (Hungary), J. Volcanol. Geotherm. Res., 2008, 177, 441–456 http://dx.doi.org/10.1016/j.jvolgeores.2008.06.01010.1016/j.jvolgeores.2008.06.010Search in Google Scholar

[18] [18] Carn S.A., The Lamongan volcanic field, East Java, Indonesia: physical volcanology, historic activity and hazards, J. Volcanol. Geotherm. Res., 2000, 95, 81–108 http://dx.doi.org/10.1016/S0377-0273(99)00114-610.1016/S0377-0273(99)00114-6Search in Google Scholar

[19] [19] Németh K., White J.D.L., Reconstructing eruption processes of a Miocene monogentic volcanic field from vent remnants: Waipiata Volcanic Field, South Island, New Zealand, J. Volcanol. Geotherm. Res., 2003, 124, 1–21. http://dx.doi.org/10.1016/S0377-0273(03)00042-810.1016/S0377-0273(03)00042-8Search in Google Scholar

[20] [20] Franz G., Breitkreuz C., Coyle D.A., El Hur B., Heinrich W., Paulick H., Pudlo D., Smith R. et al., The alkaline Meidob volcanic field (Late Cenozoic, northwest Sudan), J. Afr. Earth Sci., 1997, 25, 263–291 http://dx.doi.org/10.1016/S0899-5362(97)00103-610.1016/S0899-5362(97)00103-6Search in Google Scholar

[21] [21] Foshag W.F., Gonzalez J.R., Birth and development of Paricutin volcano, Mexico Geological Survey Bulletin, 1956, 965-D, 355–487 Search in Google Scholar

[22] [22] Luhr J.F., Glass inclusions and melt volatile contents at Paricutin Volcano, Mexico, Contrib. Mineral. Petrol., 2001, 142, 261–283 http://dx.doi.org/10.1007/s00410010029310.1007/s004100100293Search in Google Scholar

[23] [23] Funiciello R., Giordano G., De Rita D., The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events, J. Volcanol. Geotherm. Res., 2003, 123, 43–61 http://dx.doi.org/10.1016/S0377-0273(03)00027-110.1016/S0377-0273(03)00027-1Search in Google Scholar

[24] [24] Carrasco-Núñez G., Riggs, N.R., Polygenetic nature of a rhyolitic dome and implications for hazard assessment: Cerro Pizarro volcano, Mexico, J. Volcanol. Geotherm. Res., 2008, 171, 307–315 http://dx.doi.org/10.1016/j.jvolgeores.2007.12.00210.1016/j.jvolgeores.2007.12.002Search in Google Scholar

[25] [25] Kereszturi G., Németh K., Controlling conditions of phreatomagmatic to magmatic fragmentation styles of Pliocene volcanoes of West-Hungary, In: Haller M.J., Massaferro G.I. (Eds.), 3rd International Maar Conference (14-17 April 2009, Malargüe, Mendoza, Argentine), 50-51 Search in Google Scholar

[26] [26] Wijbrans J., Németh K., Martin U., Balogh K., 40Ar/39Ar geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geotherm. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.00910.1016/j.jvolgeores.2007.05.009Search in Google Scholar

[27] [27] Balogh K., Árva-Sós E., Pécskay Z., Ravasz-Baranyai L., K/Ar dating of post-sarmatian alkali basaltic rocks in Hungary, Acta Mineralogica Petrographica, 1986, 27, 75–93 Search in Google Scholar

[28] [28] Martin U., Németh K., Mio/Pliocene Phreatomagmatic Volcanism in the Western Pannonian Basin, Geol. Hung. Ser. Geol., 26, Budapest, 2004, 1–198 [29] Aubry M.P., Berggren W.A., Van Couvering J., McGowran B., Hilgen F., Steininger F., Lourens L., The Neogene and Quaternary: chronostratigraphic com-promise or non-overlapping magisteria?, Stratigraphy, 2009, 6, 1-16 Search in Google Scholar

[29] [30] Gibbard P., Cohen K.M., Global chronostratigraphical correlation table for the last 2.7 million years, Episodes, 2008, 31, 243–247 10.18814/epiiugs/2008/v31i2/011Search in Google Scholar

[30] [31] Németh K., Martin U., Csillag G., Calculation of erosion rates based on remnants of monogenetic alkaline basaltic volcanoes in the Bakony- Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age, Geolines, 2003, 15, 102–106 Search in Google Scholar

[31] [32] Budai T., Csillag G., Dudko A., Koloszár L., Geological map of Balaton Highland (1:50 000). In: Budai T., Csillag G. (Eds.), Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1: 50 000, Geological Institute of Hungary, 1999 Search in Google Scholar

[32] [33] Csillag G., Budai T., “Nagyvázsony lagoon”. In: Budai T., Csillag G. (Eds.), Geology of the Balaton Highland — Explanation of the Geological Map of the Balaton Highland, 1: 50 000, Geological Institute of Hungary, 1999 Search in Google Scholar

[33] [34] Magyar I., Geary D.H., Müller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeog. Palaeoclimatol. Palaeoecol., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-210.1016/S0031-0182(98)00155-2Search in Google Scholar

[34] [35] Sacchi M., Horváth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental record: a case study from the Late Miocene of the western Pannonian Basin, Hungary. In: Durand B., Jolivet L., Horvath F., Seranne M. (Eds.), The Mediterranean Basins: Tertiary Exten-sion within the Alpine Orogen, Geological Society, London, Special Publications, 1999 Search in Google Scholar

[35] [36] Németh K., Martin U., Late Miocene paleogeomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Zeitschrift fr Geomorphologie, 1999, 43, 417–438 10.1127/zfg/43/1999/417Search in Google Scholar

[36] [37] Martin U., Németh K., Auer A., Breitkreuz C., Csillag G., Depositional recorded of a pliocene nested multivent maar complex at Fekete-hegy, Pannonian Basin, Western Hungary, Geol. Carpath., 2002, 53, CD-version Search in Google Scholar

[37] [38] Martin U., Auer A., Németh K., Breitkreuz C., Mio-Pliocene Phreatomagmatic Volcanism in a Fluvio-Lacustrine Basin in Western Hungary, GeoLines, 2003, 15, 93–97 Search in Google Scholar

[38] [39] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) „soft-substrate” and „hard-substrate” maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the paleoenvironmental setting, J. Volcanol. Geotherm. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.00810.1016/j.jvolgeores.2006.06.008Search in Google Scholar

[39] [40] Balogh K., Petrography and K/Ar dating of Tertiary and Quaternary basaltic rocks in Hungary, Anuarul Institutului de Geologie si Geofizica, 1983, 61, 365–373 Search in Google Scholar

[40] [41] Jámbor Á., A Dunántúli-középhegység pannóniai képzödményei, A Magyar Állami Földtani Intézet évkönyve, 57, 1980 (in Hungarian) Search in Google Scholar

[41] [42] Fitch F.J., Miller, J.A., Hooker P.J., Single whole rock K-Ar isochrons, Geol. Mag., 1976, 113, 1–10 http://dx.doi.org/10.1017/S001675680004296510.1017/S0016756800042965Search in Google Scholar

[42] [43] Balogh, K., Vass, D., and Ravasz-Baranyai, L., K/Ar ages in the case ofcorrelated K and excess Ar concentrations: a case study for the alkaline olivine basalt of Somoska, Slovak-Hungarian Frontier, Geol. Carpath., 1994, 45, 97–102 Search in Google Scholar

[43] [44] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geol. Hung., 2001, 44, 281–299 or[45] Jugovics L., A Déli Bakony és a Balatonfelvidék bazaltterületei, A Magyar Állami Földtani Intézet Évi Jelentése 1953-ról, 1954, 65-88 (in Hungarian) Search in Google Scholar

[44] [46] Jámbor Á., A monostorapáti Mat-1 sz. fúrás rétegsora, Magyar Bányászati és Földtani Hivatal Adattár, 1973, 325-334 (in Hungarian) Search in Google Scholar

[45] [47] Jámbor Á., A monostorapáti Mat-2 sz. fúrás rétegsora, Magyar Bányászati és Földtani Hivatal Adattár, 1973, 335-342 (in Hungarian) Search in Google Scholar

[46] [48] Fisher R.V., Schmincke H.-U., Pyroclastic Rocks, Berlin, 1984 10.1007/978-3-642-74864-6Search in Google Scholar

[47] [49] Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution ofmaar-diatreme volcanoes, J. Volcanol. Geotherm. Res., 2007, 159, 4–32 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.01910.1016/j.jvolgeores.2006.06.019Search in Google Scholar

[48] [50] Lorenz V., On the growth of maar and diatremes and its relevance to the formation of tuff rings, Bull. Volcanol., 1986, 48, 265–274 http://dx.doi.org/10.1007/BF0108175510.1007/BF01081755Search in Google Scholar

[49] [51] Chough S.K. and Sohn Y.K., Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea, Sedimentology, 1990, 37, 1115–1135 http://dx.doi.org/10.1111/j.1365-3091.1990.tb01849.x10.1111/j.1365-3091.1990.tb01849.xSearch in Google Scholar

[50] [52] Walker G.P.L., Characteristics of dune-bedded py roclastic surge bedsets J. Volcanol. Geotherm. Res., 1984, 20, 281–296 http://dx.doi.org/10.1016/0377-0273(84)90044-110.1016/0377-0273(84)90044-1Search in Google Scholar

[51] [53] Sheridan M.F., Wohletz K.H., Hydrovolcanic Explosions: The Systematics of Water-Pyroclast Equilibration, Science, 1981, 212, 1387–1389 http://dx.doi.org/10.1126/science.212.4501.138710.1126/science.212.4501.1387Search in Google Scholar

[52] [54] Vazquez J.A., Ort M.H., Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA J. Volcanol. Geotherm. Res., 2006, 154, 222–236 http://dx.doi.org/10.1016/j.jvolgeores.2006.01.00310.1016/j.jvolgeores.2006.01.003Search in Google Scholar

[53] [55] Sohn Y.K., Chough S.K., Depositional processes ofthe Suwolbong tuff ring, Cheju Island (Korea), Sedimentology, 1989, 36, 837–855 http://dx.doi.org/10.1111/j.1365-3091.1989.tb01749.x10.1111/j.1365-3091.1989.tb01749.xSearch in Google Scholar

[54] [56] Sohn Y.K., Hydrovolcanic processes forming basaltic tuff rings and cones on Cheju Island, Korea, Geol. Soc. Am. Bull., 1996, 108, 1199–1211 http://dx.doi.org/10.1130/0016-7606(1996)108<1199:HPFBTR>2.3.CO;210.1130/0016-7606(1996)108<1199:HPFBTR>2.3.CO;2Search in Google Scholar

[55] [57] White J.D.L., The depositional record of small, mono genetic volcanoes within terrestrial basins. In: Fisher, E.V. and Smith, G.A. (Eds.), Sedimentation in Volcanic Settings, 1991 10.2110/pec.91.45.0155Search in Google Scholar

[56] [58] Carrasco-Núnez G., Ort M.H., Romero C., Evolution and hydrological conditions of a maar volcano (Atex-cac crater, Eastern Mexico), J. Volcanol. Geotherm. Res., 2007, 159, 179–197 http://dx.doi.org/10.1016/j.jvolgeores.2006.07.00110.1016/j.jvolgeores.2006.07.001Search in Google Scholar

[57] [59] Leahy K., Discrimination of reworked pyroclastics from primary tephra-fall tuffs: a case study using kimberlites of Fort a la Corne, Saskatchewan, Canada, Bull. Volcanol., 1997, 59, 65–71 http://dx.doi.org/10.1007/s00445005017510.1007/s004450050175Search in Google Scholar

[58] [60] Houghton B.F., Hackett W.R., Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: A complex interaction between external water and rising basaltic magma, J. Volcanol. Geotherm. Res., 1984, 21, 207–231 http://dx.doi.org/10.1016/0377-0273(84)90023-410.1016/0377-0273(84)90023-4Search in Google Scholar

[59] [61] Houghton B.F. and Schmincke H.-U., Mixed deposits of simultaneous strombolian and phreatomagmatic volcanism: Rothenberg volcano, East Eifel Volcanic Field, J. Volcanol. Geotherm. Res., 1986, 30, 117–130 http://dx.doi.org/10.1016/0377-0273(86)90069-710.1016/0377-0273(86)90069-7Search in Google Scholar

[60] [62] Valentine G.A., Krier D., Perry F.V., Heiken G., Scoria cone construction mechanisms, Lathrop Wells volcano, southern Nevada, USA, Geology, 2005, 33, 629–632 http://dx.doi.org/10.1130/G21459.110.1130/G21459.1Search in Google Scholar

[61] [63] Sumner J., Blake S., Matela R., Wolff J., Spatter J. Volcanol. Geotherm. Res., 2005, 142, 49–65 http://dx.doi.org/10.1016/j.jvolgeores.2004.10.01310.1016/j.jvolgeores.2004.10.013Search in Google Scholar

[62] [64] Bertotto G.W., Bjerg E.A., Cingolani C.A., Hawai-ian and Strombolian style monogenetic volcanism in the extra-Andean domain of central-west Argentina, J. Volcanol. Geotherm. Res., 2006, 158, 430–444 http://dx.doi.org/10.1016/j.jvolgeores.2006.08.00110.1016/j.jvolgeores.2006.08.001Search in Google Scholar

[63] [65] Yamamoto H., The Mode of Lava Outflow from Cinder Cones in the Ojika-Jima Monogenetic Volcano Group, Bulletin of the Volcanological Society of Japan, 2003, 48, 11–25 Search in Google Scholar

[64] [66] Inbar M., Risso C., A morphological and morphometric analysis of a high density cinder cone volcanic field. &#x2014; Payun Matru, south-central Andes, Argentina, Z. Geomorphol., 2001, 45, 321–343 10.1127/zfg/45/2001/321Search in Google Scholar

[65] [67] Smith G.A., Grubensky M.J., Geissman J.W., Nature and origin of cone-forming volcanic breccias in the Te Herenga Formation, Ruapehu, New Zealand, Bull. Volcanol., 1999, 61, 64–82 http://dx.doi.org/10.1007/s00445005026310.1007/s004450050263Search in Google Scholar

[66] [68] Fisher R.V., Classification of volcanic breccias, Geol. Soc. Am. Bull., 1960, 71, 973–981 http://dx.doi.org/10.1130/0016-7606(1960)71[973:COVB]2.0.CO;2Search in Google Scholar

[67] [69] Sparks R.S.J., Stasiuk M.V., Gardeweg M., Swanson D.A., Welded breccias in andesite lavas, J. Geol. Soc., 2000, 150, 897–902 http://dx.doi.org/10.1144/gsjgs.150.5.089710.1144/gsjgs.150.5.0897Search in Google Scholar

[68] [70] Grubensky M.J., Smith G.A., Geissman J.W., Field and paleomagnetic characterization of lithic and sco-riaceous breccias next term at Pleistocene Broken Top volcano, Oregon Cascades J. Volcanol. Geotherm. Res., 1998, 83, 93–114 http://dx.doi.org/10.1016/S0377-0273(98)00006-710.1016/S0377-0273(98)00006-7Search in Google Scholar

[69] [71] Cas R., Wright J., Volcanic Successions, Modern and Ancient., Allen and Unwin, London &#x2014; Boston &#x2014; Sydney &#x2014; Wellington, 1987 10.1007/978-94-009-3167-1Search in Google Scholar

[70] [72] McPhie J., Doyle M., Allen R., Volcanic Textures. A guide to the interpretation of textures in volcanic rocks., Tasmania, 1993 Search in Google Scholar

[71] [73] White J.D.L., Houghton B.F., Primary volcaniclastic rocks, Geology, 2006, 34, 677–680 http://dx.doi.org/10.1130/G22346.110.1130/G22346.1Search in Google Scholar

[72] [74] Skilling I.P., White J.D.L., McPhie J., Peperite: a review of magma-sediment mingling, J. Volcanol. Geotherm. Res., 2002, 114, 1–17 http://dx.doi.org/10.1016/S0377-0273(01)00278-510.1016/S0377-0273(01)00278-5Search in Google Scholar

[73] [75] White J.D.L., McPhie J., Skilling I., Peperite: a useful genetic term, Bull. Volcanol., 2000, 62, 65–66 http://dx.doi.org/10.1007/s00445005029310.1007/s004450050293Search in Google Scholar

[74] [76] Lavine A., Morphology of a crater-filling lava lake margin, The Peninsula tuff cone, Tule Lake National Wildlife Refuge, California: implications for formation of peperite textures, J. Volcanol. Geotherm. Res., 2002, 114, 147–163 http://dx.doi.org/10.1016/S0377-0273(01)00285-210.1016/S0377-0273(01)00285-2Search in Google Scholar

[75] [77] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geotherm. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.01010.1016/j.jvolgeores.2006.06.010Search in Google Scholar

[76] [78] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring hat developed in a fluviolacustrine basin: Kissomlyö volcano (western Hungary), J. Volcanol. Geotherm. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.01910.1016/j.jvolgeores.2005.04.019Search in Google Scholar

[77] [79] van Dam J.A., Geographic and temporal patterns in the late Neogene (12-3 Ma) aridification of Europe: The use ofsmall mammals as paleoprecipitation proxies, Palaeogeog. Palaeoclimatol. Palaeoecol., 2006, 238, 190–218 http://dx.doi.org/10.1016/j.palaeo.2006.03.02510.1016/j.palaeo.2006.03.025Search in Google Scholar

[78] [80] Eronen J.T., Rook L., The Mio-Pliocene European primate fossil record: dynamics and habitat tracking, J. Hum. Evol., 2004, 47, 323–341 http://dx.doi.org/10.1016/j.jhevol.2004.08.00310.1016/j.jhevol.2004.08.003Search in Google Scholar

[79] [81] Lorenzoni P., Mirabella A., Bidini D., Lulli L., Soil genesis on trachytic and leucititic lavas of Cimini volcanic complex (Latium, Italy), Geoderma, 1995, 68, 79–99 http://dx.doi.org/10.1016/0016-7061(95)00027-L10.1016/0016-7061(95)00027-LSearch in Google Scholar

[80] [82] Tucker D.S. Scott K.M., Structures and facies associated with the flow of subaerial basaltic lava into a deep freshwater lake: The Sulphur Creek lava flow, North Cascades, Washington, J. Volcanol. Geotherm. Res., 2009, 185, 311–322 http://dx.doi.org/10.1016/j.jvolgeores.2008.11.02810.1016/j.jvolgeores.2008.11.028Search in Google Scholar

[81] [83] Waichel B.L., Scherer C.M.S., Frank H.T., Basaltic lava flows covering active aeolian dunes in the Paraná Basin in southern Brazil: Features and emplacement aspects J. Volcanol. Geotherm. Res., 2008, 171, 59–72 http://dx.doi.org/10.1016/j.jvolgeores.2007.11.00410.1016/j.jvolgeores.2007.11.004Search in Google Scholar

[82] [84] Csillag G., Káli-medence és környékének geomorfolögiai szintjei, A Magyar Állami Földtani Intézet évi Jelentése 2004-röl, 2004, 95-110 (In Hungarian) Search in Google Scholar

[83] [85] Csillag G., Németh K., Sebe K., Paleofelszínek és vulkánl szerkezetek kapcsolata a Balaton-felvldék és a Bakony területén, In: (Eds.), IV. Magyar Földrajzl Konferencla (14-15 November 2008, Debrecen, Hungary), 84-90 (in Hungarian) Search in Google Scholar

[84] [86] Favalli M., Karátson D., Mazzarlnl F., Pareschl M.T., Boschl E., Morphometry of scoria cones located on a volcano flank: A case study from Mt. Etna (Italy), based on high-resolution LIDAR data, J. Volcanol. Geotherm. Res., 2009, 186, 320–330 http://dx.doi.org/10.1016/j.jvolgeores.2009.07.01110.1016/j.jvolgeores.2009.07.011Search in Google Scholar

[85] [87] Németh K., Martin U., Harangl S., Miocene phreatomagmatlc volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geotherm. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-210.1016/S0377-0273(01)00223-2Search in Google Scholar

[86] [88] Zimanowski B., Wohletz K.H., Physics of phreatomag matism I., Terra Nostra, 2000, 6, 515–523 Search in Google Scholar

[87] [89] White J.D.L., Impure coolants and interaction dynamics of phreatomagmatic eruptions, J. Volcanol. Geotherm. Res., 1996, 74, 155–170 http://dx.doi.org/10.1016/S0377-0273(96)00061-310.1016/S0377-0273(96)00061-3Search in Google Scholar

[88] [90] Houghton B.F., Wilson C.J.N., Smith I.E.M., Shallowseated controls on styles of explosive basaltic volcanism: a case study from New Zealand, J. Volcanol. Geotherm. Res., 1999, 91, 97–120 http://dx.doi.org/10.1016/S0377-0273(99)00058-X10.1016/S0377-0273(99)00058-XSearch in Google Scholar

[89] [91] Keller J., Quaternary maar volcanism near Karapinar in centralAnatolia, Bull. Volcanol., 1973, 38, 378–396 http://dx.doi.org/10.1007/BF0259941310.1007/BF02599413Search in Google Scholar

[90] [92] Aranda-Gómez J.J., Luhr J.F., Pier G., The La Brena-El Jagüey Maar Complex, Durango, México: I. Geological evolution, Bull. Volcanol., 1992, 54, 393–404 http://dx.doi.org/10.1007/BF0031232110.1007/BF00312321Search in Google Scholar

[91] [93] Ort M.H., Carrasco-Núnez G., Lateral vent migration during phreatomagmatic and magmatic eruptions at Tecuitlapa Maar, east-central Mexico, J. Volcanol. Geotherm. Res., 2009, 181, 67–77 http://dx.doi.org/10.1016/j.jvolgeores.2009.01.00310.1016/j.jvolgeores.2009.01.003Search in Google Scholar

[92] [94] Büchel G., Lorenz V., Zum Alter des Maarvulkanismus der Westeifel, Neues Jahrbuch für Geologie, Paleontologie, Mineralogie, 1982, 163, 1–22 Search in Google Scholar

[93] [95] Lorenz V., Explosive volcanism of the West Eifel volcanic field, Germany. In: Kornprobat, J. (Eds.), Kimberlites I.: Kimberlites and related rocks, Elsevier, 1984 Search in Google Scholar

Published Online: 2010-9-1
Published in Print: 2010-9-1

© 2010 Versita Warsaw

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/v10085-010-0019-2/html
Scroll to top button