Loss of 40Ar(rad) from leucite-bearing basanite at low temperature: implications on K/Ar dating.

Kadosa Balogh 1 , Károly Németh 2 , Tetsumaru Itaya 3 , Ferenc Molnár 4 , Robert Stewart 2 , Ngo Thanh 5 , Hironobu Hyodo 3  and Lajos Daróczi 6
  • 1 Inst. Nuclear Res., Hungarian Acad. Sci., Debrecen, Hungary
  • 2 CS-INR, Massey University, Volcanic Risk Solutions, Palmerston North, New Zealand
  • 3 Res. Inst. Nat. Sci., Okayama Univ. Sci., Okayama, Japan
  • 4 Dept. Mineralogy, Eötvös L. Univ., Budapest, Hungary
  • 5 Dept of Geology, Hanoi Univ. of Mining and Geology, Hanoi, Vietnam
  • 6 Dept. Solid State Phys., Univ. Debrecen, Debrecen, Hungary


The Bakony-Balaton Highland Volcanic Field (BBHVF) is located in the central part of Transdanubia, Pannonian Basin, with over 50 alkali basaltic volcanoes. The basanite plug of Hegyestu erupted in the first phase of volcanic activity. K/Ar and Ar/Ar ages were published for the BBHVF. K/Ar and Ar/Ar ages of the leucite-bearing basanite of Hegyestás were conflicting. This is caused by the special Ar retention feature of leucite in this basanite.

K/Ar ages measured in the usual way were 25–45% younger, but after HCl treatment of the rock, or after reducing the baking temperature of the argon extraction line from 250°C to 150°C, they became similar to the

Ar/Ar ages. All Ar/Ar determinations were performed after HF treatment. HCl treatment dissolved olivine, nepheline, leucite, magnetite and from 1-1 sample analcime or calcite. K dissolution studies from different locations of Hegyestü have shown that K content is mostly ≈2%, but it may decrease to ≈0.3%. HCl treatment dissolved 28.0–63.5% of the K content. The calculated K concentration for the dissolved part of samples with ~2%K was 4.02-6.42%: showing that leucite is responsible for the low temperature loss of 40Ar(rad). Ar may release at low temperature from very finegrained mineral, or when the Ar release mechanism changes. A 40Ar(rad) degassing spectrum has been recorded in the 55–295°C range of baking temperature and the data were plotted in the Arrhenius diagram. The diagram shows that a change of the structure in the 145–295°C range caused the loss of 40Ar(rad). On fractions of HCl treated rock 7.56±0.17 Ma isochron K/Ar age has been determined. This is regarded as minimum age of eruption and it is similar to the Ar/Ar isochron age (7.78±0.07 Ma).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] [1] Szabó C., Harangi S., Csontos L., Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region, Tectonophysics, 1992, 208, 243–256 http://dx.doi.org/10.1016/0040-1951(92)90347-9

  • [2] [2] Pécskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Koneĉny V., Kovács M., Márton E., Kaliciak M., Széky-Fux V., Póka T., Gyarmati P., Edelstein O., Rosu E., Zec B., Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region, Acta Vulcanologica, 1995, 7, 15–28

  • [3] [3] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 281–301

  • [4] [4] Seghedi I., Downes H., Vaselli O., Szakács A., Balogh K., Pécskay Z., Post-collisional Tertiary-Quaternary mafic alkalic magmatism in the Carpathian-Pannonian region: a review, Tectonophysics, 2004, 393, 43–62 http://dx.doi.org/10.1016/j.tecto.2004.07.051

  • [5] [5] Martin U., Németh K., Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin, Geologica Hungarica Series Geologica, Geological Institute of Hungary, Budapest, 2004, 1-193

  • [6] [6] Németh K., Martin U., Late Miocene paleogeomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Zeitschrift für Geomorphologie, 1999, 43, 417–438

  • [7] [7] Németh K., Martin U., Csillag G., Calculation of erosion rates based on remnants of monogenetic alkaline basaltic volcanoes in the Bakony-Balaton Highland Volcanic Field (Western Hungary) of Mio/Pliocene age, Geolines, 2003, 15, 93–97

  • [8] [8] Németh K., Martin U., Csillag G., Lepusztult maar/diatrema szerkezetek a Bakony-Balaton Felvidék Vulkáni Területröl, MÁFI Évi Jelentése a 2000 évröl — Annual Report of the Geological Institute of Hungary, 2003, 83-99 (in Hungarian)

  • [9] [9] Balogh K., Németh K., Evidence for the neogene small-volume intracontinental. volcanism in western hungary: K/Ar geochronology of the Tihany Maar volcanic complex. Geol. Carpath., 2005, 56, 91–99

  • [10] [10] Balogh K., Árva-Sós E., Pécskay Z., Ravasz-B aranyai L., K/Ar dating of post-Sarmatian alkali basaltic rocks in Hungary, Acta Mineralogica et Petrographica, 1986, 28, 75–94

  • [11] [11] Harangi R., Harangi S., Volcanological study of the Neogene basaltic volcano of Saghegy (Little Hungarian Plain volcanic field, western Hungary), Acta Vulcanologica, 1995, 7, 189–197

  • [12] [12] Harangi S., Neogene to Quaternary volcanism of the Carpathian-Pannonian Region — a review, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 223–258

  • [13] [13] Harangi S., Németh K., Balogh K., Volcanology and chronology of the Tihany Volcano, Balaton Highland (Pannonian Basin, Hungary), Romanian Journal of Stratigraphy, 1995, 76, 19–21

  • [14] [14] Harangi S., Vaselli O., Kovacs R., Tonarini S., Coradossi N., Ferraro D., Volcanological and magmatological studies on the Neogene basaltic volcanoes of the Southern Little Hungarian Plain, Pannonian Basin (Western Hungary), Mineralogica et Petrographica Acta, 1994, 37, 183–197

  • [15] [15] Németh K., Csillag G., Tapolcai Bazalt Formáció. In: Budai T., Csillag G. (Eds.), A Balaton-felvidék földtana, Geological Institute of Hungary, Budapest, 1999, 114-122 (in Hungarian)

  • [16] [16] Németh K., Martin U., Harangi S., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geoth. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-2

  • [17] [17] Németh K., Martin U., Philippe M., Eroded porousmedia aquifer controlled hydrovolcanic centers in the South Lake Balaton region, Hungary;the Boglár Volcano, Acta Geologica Hungarica, 1999, 42, 251–266

  • [18] [18] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex — Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting, J. Volcanol. Geoth. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.008

  • [19] [19] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring that developed in a fluviolacustrine basin: Kissomlyo Volcano (Western Hungary), J. Volcanol. Geoth. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.019

  • [20] [20] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geoth. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.010

  • [21] [21] Németh K., Goth K., Martin U., Csillag G., Suhr P., Reconstructing paleoenvironment, eruption mechanism and paleomorphology ofthe Pliocene Pula maar, (Hungary), J. Volcanol. Geoth. Res., 2008, 177, 441–456 http://dx.doi.org/10.1016/j.jvolgeores.2008.06.010

  • [22] [22] Wijbrans J., Németh K., Martin U., Balogh K., Ar40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geoth. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.009

  • [23] [23] Balogh K., Jámbor A., PartényiZ., Ravaszné Baranyai L., Solti G., A dunántúli bazaltok K/Ar radiometrikus kora, MÁFI évi Jel 1980-röl, 1982, 243-259 (in Hungarian)

  • [24] [24] Borsy Z., Balogh K., Kozák M., Pécskay Z., Újabb adatok a Tapolcai-medence fejlõdéstörténetéhez, Acta Geographica Debrecina, 1986, 23, 79–104 (in Hungarian)

  • [25] [25] Embey-Isztin A., Dobosi G., Altherr R., Meyer H.P., Thermal evolution of the lithosphere beneath the western Pannonian Basin; evidence from deep-seated xenoliths, Tectonophysics, 2001, 331, 285–306 http://dx.doi.org/10.1016/S0040-1951(00)00287-0

  • [26] [26] Embey-Isztin A., Downes H., James D.E., Upton B.G.J., Dobosi G., Ingram G.A., Harmon R.S., Scharbert H.G., The petrogenesis of Pliocene alkaline volcanic-rocks from the Pannonian Basin, Eastern Central-Europe, J. Petrol., 1993, 34, 317–343

  • [27] [27] Harangi S., Neogene magmatism in the Alpine-Pannonian Transition Zone — a model for melt generation in a complex geodynamic setting, Acta Vulcanologica, 2001, 13, 25–39

  • [28] [28] Budai T., Csillag G. (Eds.), A Balaton-felvidék földtana: magyarázó a Balaton-felvidék földtani térképéhez, 1:50 000, Occasional Papers of the Geological Institute of Hungary, Geological Institute of Hungary, Budapest, 1999, 197, 1–257 (in Hungarian)

  • [29] [29] Budai T., Csillag G., Dudko A., Koloszár L., A Balaton-felvidék földtani térképe, Magyar Állami Földtani Intézet, Budapest, 1999 (in Hungarian)

  • [30] [30] Jugovics L., Adatok Tátika-Prága-Sarvaly-hegyek vulkanolögiai feléptí′eséhez, Földtani Közlöny, 1948, 78, 196–205 (in Hungarian)

  • [31] [31] Jugovics L., A dunántúli bazalt és bazalttufa területek, MÁFI Évi Jelentés 1967-rõl, 1968, 75-82 (in Hungarian)

  • [32] [32] Jugovics L., A Balaton-felvidék és a Tapolcai-medence bazaltterületeinek felépítése, Annual Report of the Hungarian Geological Institute, 1968, 1971, 223–244 (in Hungarian)

  • [33] [33] Jugovics L., Kabhegy és a körülötte települö bazaltterületek (kabhegyi bazaltcsoport), Annual Report of the Hungarian Geological Institute, 1968, 1971, 245–255 (in Hungarian)

  • [34] [34] Löczy L. S., A Balaton környékének geológiai képzõdményei és ezeknek vidékek szerinti telepedése. In: Lóczy, L.I. (Ed.), A Balaton tudományos tanulmányozásának eredményei. Royal Hungarian Geological Institute, Budapest, 1913 (in Hungarian)

  • [35] [35] Lóczy L. S., A Balaton-tó környékének részletes geológiai térképe, M = 1:75 000. Royal Hungarian Geological Institute, Budapest, 1920 (in Hungarian)

  • [36] [36] Kazmér M., Dunkl I., Frisch W., Kuhlemann J., Ozsvart P., The Palaeogene forearc basin of the Eastern Alps and Western Carpathians: subduction erosion and basin evolution, J. Geol. Soc. London, 2003, 160, 413–428 http://dx.doi.org/10.1144/0016-764902-041

  • [37] [37] Kázmér M., Kovács S., Permian-Palaeogene palaeogeography along the eastern part of the Insubric-Periadriatic Lineament system: evidence for continental escape of the Bakony-Drauzug Unit, Acta Geologica Academiae Scientiarum Hungaricae, 1985, 28, 71–84

  • [38] [38] Kázmér M., Birth, life and death of the Pannonian Lake, Palaeogeogr. Palaeoecol., 1990, 79, 171–188 http://dx.doi.org/10.1016/0031-0182(90)90111-J

  • [39] [39] Majoros G., A dunántúli kozéphegységi perm litosztratigráfiai vázlata, Altalanos Foldtani Szemle, 1980, 14, 55–62 (in Hungarian)

  • [40] [40] Majoros G., Balatonfelvidéki Homokkö Formáció. In: Budai T., Csillag G. (Eds)., A Balaton-felvidék földtana, Geological Institute of Hungary, Budapest, 1999, 26–31 (in Hungarian)

  • [41] [41] Tari G., Multiple Miocene block rotation in the Bakony Mountains, Transdanubian Central Range, Hungary, Tectonophysics, 1991, 199, 93–108

  • [42] [42] Tari G., Horváth F., Rumpler J., Styles of extension in the Pannonian Basin, Tectonophysics, 1992, 208, 203–219 http://dx.doi.org/10.1016/0040-1951(92)90345-7

  • [43] [43] Császár G., Lelkesné-Felvári G., Balatoni Fillit Formációcsoport. In: Budai T., Csillag G. (Eds)., A Balaton-felvidék földtana, Geological Institute of Hungary, Budapest, 1999, 15–21 (in Hungarian)

  • [44] [44] Lelkes-Felvári G., Petrographische Untersuchung einiger prepermische Bildungen der Balaton-Linie, Geologica Hungarica Series Geology, 1978, 18, 224–295 (in German)

  • [45] [45] Lelkes-Felvári G., Arkai P., Sassi F.P., Main features of the regional metamorphic events in Hungary: A review, Geol. Carpath., 1996, 47, 257–270

  • [46] [46] Kázmér M., Márton E., Kuhlemann J., Dunkl I., Frisch W., Braga G., Grandesso P., Zampieri D., Alps, Paratethys, Mediterranean; displacement of an orogen between Eocene and Miocene time. Tuebinger Geowissenschaftliche Arbeiten, Reihe A, Geologie, Palaeontologie, Stratigraphie, 1999, 52, 49

  • [47] [47] Kovacic M., Zupanic J., Babic L., Vrsaljko D., Miknic M., Bakrac K., Hecimovic I., Avanic R., Brkic M., Lacustrine basin to delta evolution in the Zagorje Basin, a Pannonian sub-basin (Late Miocene: Pontian, NW Croatia), Facies, 2004, 50, 19–33 http://dx.doi.org/10.1007/s10347-003-0001-6

  • [48] [48] Magyar I., Geary D.H., Muller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeogr. Palaeoecol., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-2

  • [49] [49] Babinszki E., Sztanö O., Magyari Á., üledékklépzodés a Pannon-tö Kállai öblében: a Kállai Homok nyomfossziliái és szedimentolögiai bélyegei. (Episodic deposition in the Kálla bay of Lake Pannon: sedimentology and trace fossils of Kálla Sand. Földtani Közlöny (Bulletin of the Hungarian Geol. Soc.), Budapest, 2003, 133/3, 363–382

  • [50] [50] Sacchi M., Horváth F., Towards a new time scale for the Upper Miocene continental series of the Pannonian basin (Central Paratethys), Stephan Mueller Special Publication Series, 2002, 3, 79–94 http://dx.doi.org/10.5194/smsps-3-79-2002

  • [51] [51] Gulyás S., The palaeogeography ofLake Pannon during deposition of the Congeria rhomboidea beds, Geologica Croatia, 2001, 54, 15–26

  • [52] [52] Jámbor Á., Review of the geology of the Pannonian Formations of Hungary, Acta Geologica Academiae Scientiarum Hungaricae, 1989, 32, 269–324

  • [53] [53] Müller P., A pannöniai képzodmények rétegtana (Stratigraphy of the Pannonian sediments) [in Hungarian]. In Magyaroszág geolögiai képzodményeinek rétegtana (Stratigraphy of geological units of Hungary), Bérczi I., Jámbor Á. (Eds.). MOL Company and Hungarian Geological Inst., Budapest, 1998, 485-493

  • [54] [54] Müller P., Geary D.H., Magyar I., The endemic molluscs of the Late Miocene Lake Pannon: their origin, evolution, and family-level taxonomy, Lethaia, 1999, 32, 47–60 http://dx.doi.org/10.1111/j.1502-3931.1999.tb00580.x

  • [55] [55] Büchel G., Lorenz V., Schmincke H.U., Zimanowski B., Quaternary volcanic fields of the Eifel, Fortschr. Mineral., 1986, 64, 97–141

  • [56] [56] White J.D.L., Maar-dlatreme phreatomagmatlsm at Hopl Buttes, Navajo Nation (Arizona), USA, Bull. Volcanol., 1991, 53, 239–258 http://dx.doi.org/10.1007/BF00414522

  • [57] [57] Godchaux M., Bonnichsen, B., Syneruptive magmawater and posteruptive lava-water interactions in the Western Snake River Plain, Idaho, during the past 12 million years. In: White B., McCurry M. (Eds.), Tectonic and magmatic evolution of the Snake River Plain Volcanic Province, Bonnichsen Idaho Geological Survey, University of Idaho, Moscow, Idaho, 2002, 387–435

  • [58] [58] Allen S.R., Bryner V.F., Smith I.E.M., Ballance P.F., Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand, New Zealand Journal of Geology and Geophysics, 1996, 39, 309–327 http://dx.doi.org/10.1080/00288306.1996.9514714

  • [59] [59] von Veh M.W., Németh K., An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand, Geomorphologie, 2009, 3, 175–186

  • [60] [60] Hare A.G., Cas R.A.F., Volcanology and evolution of the Werribee Plains intraplate, basaltic lava flowfield, Newer Volcanics Province, southeast Australia, Australian Journal of Earth Sciences, 2005, 52, 59–78 http://dx.doi.org/10.1080/08120090500100051

  • [61] [61] Jones R.N., McMahon T., Bowler J.M., Modelling historical lake levels and recent climate change at three closed lakes, Western Victoria, Australia (c.1840-1990), J. Hydrol., 2001, 246, 159–180 http://dx.doi.org/10.1016/S0022-1694(01)00369-9

  • [62] [62] Wellman P., Potassium-argon ages of the Cainozoic volcanic rocks of eastern Victoria, Australia, Journal of the Geological Society of Australia, 1974, 21, 359–376

  • [63] [63] Büchel G., Maars of the Westeifel, Germany. In: Negendank J.F.W., Zolitschka B., (Eds.), Paleolimnology of European Maar Lakes, Springer-Verlag, Berlin, Heidelberg. 1993

  • [64] [64] Büchel G., Negendank J.F.W., Wuttke M., Viereck L., Quaternary and Tertiary Eifel maars, Enspel (Westerwald) and Laacher See: Volcanology, sedimentology and hydrogeology. In: Neuffer F.O., Lutz H. (Eds.), Field trip guidebook. International Maar Conference, Daun/Vulkaneifel (Germany) August 17-27, 2000, Mainzer Naturwissenschaftliches Archiv, Mainz, 2000, 85–125

  • [65] [65] Fitch F.J., Miller J.A., Hooker P.J., Single whole rock K-Ar isochrons, Geol. Mag., 1976, 111, 1–10 http://dx.doi.org/10.1017/S0016756800042965

  • [66] [66] Balogh K., Development and application of K/Ar and Ar/Ar geochronology, Ph D. theses, Institute of Nuclear Research, Hungarian Academy of Science, Debrecen, 2006

  • [67] [67] Thanh N.X., Itaya T., Balogh K., Electron microprobe analyses of minerals in alkaline basalts from the Bakony-Balaton Highland volcanic field, western Hungary, Bulletin of Research Institute of Natural Sciences, Okayama University of Sciences, 2004, 30, 61–67

  • [68] [68] Radicati di Brozolo F., Huneke J.C., Papanastassion D.A., Wasserburg G.J., 40Ar-39Ar and Rb-Sr age determinations on Quaternary volcanic rocks, Earth Planet. Sci. Lett., 1981, 53, 445–456 http://dx.doi.org/10.1016/0012-821X(81)90049-2

  • [69] [69] Carslaw H.S., Jaeger J.C., Conduction of heat in solids, Clarendon Press, Oxford, 1947

  • [70] [70] Fechtig H., Kalbitzer S., The diffusion of argon in potassium-bearing solids. In: Schaeffer O.A., ZÁhringer J. (Eds.), Potassium Argon Dating, Springer, Berlin Heidelberg New York, 1966, 68–107

  • [71] [71] McDougall I., Harrison T.M., Geochronology and thermochronology by the 40Ar/39Ar method. Oxford University Press — Clarendon Press, New York — Oxford, 1988

  • [72] [72] Balogh K., Vass D., Ravasz-Baranyai L., K/Ar ages in the case of correlated K and excess Ar concentrations: A case study for the alkaline olivine basalt of Somoska, Slovak-Hungarian frontier, Geol. Carpath., 1994, 45, 97–102

  • [73] [73] Balogh K., Itaya T., Németh K., Martin U., Wijbrans J., Than N.X., Study of controversial K/Ar and 40Ar/39Ar ages of the Pliocene alkali basalt of Hegyestû, Bala-ton Highland, Hungary: a progress report, Mineralia Slovaca, 2005, 37, 298–301

  • [74] [74] Jámbor A., Partényi Z., Solti G., A dunántúli bazaltvulkanitokföldtanijellegei, MÁFI évi Jel, 1979, 1981, 225-239 (in Hungarian)

  • [75] [75] Müller P., Magyar I., A Prosodacnomyak rétegtani jelentósége a Kötcse környeki pannöniai s.l. üledekekben, Földtani Közlöny 1992, 122, 1–38 (in Hungarian)

  • [76] [76] Müller P., Szönoky M., Faciostratotype Tihany-Feherpart (Hungary), (“Balatonica Beds by Lorenthey, 1905”), in Chronostratigraphie und Neostratotypen, Neogen der Westliche (“Zentrale”) Paratethys 8, Pontien, Stevanovic P., Nevesskaya L.A., Marinescu F.A.S., Jámbor A. (Eds.), 1989, JAZU (Jugoslavian Academy of Sciences) and SANU (Serbian Academy of Sciences): Zagreb-Beograd, 427–436

  • [77] [77] Konecny V., Lexa J., Paleovolcanic reconstruction of Neogene volcanoes in the central Slovakia volcanic field, Geol. Carpath., 1999, 50, 109–112

  • [78] [78] Konecny V., Lexa J., Balogh K., Broska I., Neogene-Quaternary alkali basalt volcanism of Slovakia;review of volcanic forms and evolution, Geol. Carpath., 1999, 50, 112–114

  • [79] [79] Balogh K., Lobitzer H., Pécskay Z., Ravasz C., Solti G., Kelet-stájerországi és burgenlandi tercier vulkanitok K/Ar kora, MÁFI Évi Jel. 1988-ról, 1990, 1, 451–468

  • [80] [80] Balogh K., Ebner F., Ravasz C., K/Ar-Alter tertiäre Vulkanite der südöstlichen Steiermark und des südlichen Burgenlands. In: Lobitzer H., Császár G., Dauer A. (Eds.), Jubileumschrift 20 Jahre Geologische Zuzammenarbeit österreich-Ungarn, Geologische Bundesanstalt, Wien, 1994, 55–72 (in German)


Journal + Issues

Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an international, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Geology, Geophysics, Geography, Geomicrobiology, Geotourism, Oceanography and Hydrology, Glaciology, Atmospheric Sciences, Speleology, Volcanology, Soil Science, Geoinformatics, Geostatistics. The journal is published in the Open Access model.