Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation

  • 1 Volcanic Risk Solutions CS-INR, Massey University, Palmerston North, New Zealand

Abstract

The majority of the Mio-Pleistocene monogenetic volcanoes in Western Hungary had, at least in their initial eruptive phase, phreatomagmatic eruptions that produced pyroclastic deposits rich in volcanic glass shards. Electron microprobe studies on fresh samples of volcanic glass from the pyroclastic deposits revealed a primarily tephritic composition. A shape analysis of the volcanic glass shards indicated that the fine-ash fractions of the phreatomagmatic material fragmented in a brittle fashion. In general, the glass shards are blocky in shape, low in vesicularity, and have a low-to-moderate microlite content. The glass-shape analysis was supplemented by fractal dimension calculations of the glassy pyroclasts. The fractal dimensions of the glass shards range from 1.06802 to 1.50088, with an average value of 1.237072876, based on fractal dimension tests of 157 individual glass shards. The average and mean fractal-dimension values are similar to the theoretical Koch-flake (snowflake) value of 1.262, suggesting that the majority of the glass shards are bulky with complex boundaries. Light-microscopy and backscattered-electron-microscopy images confirm that the glass shards are typically bulky with fractured and complex particle outlines and low vesicularity; features that are observed in glass shards generated in either a laboratory setting or naturally through the interaction of hot melt and external water. Textural features identified in fine- and coarse-ash particles suggest that they were formed by brittle fragmentation both at the hot melt-water interface (forming active particles) as well as in the vicinity of the interaction interface. Brittle fragmentation may have occurred when hot melt rapidly penetrated abundant water-rich zones causing the melt to cool rapidly and rupture explosively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Heiken G.H., Wohletz K.H., Volcanic Ash, University of California Press, Berkeley, 1986

  • [2] Zimanowski B., Wohletz K., Dellino P., Buttner R., The volcanic ash problem, J. Volcanol. Geoth. Res., 2003, 122, 1–5 http://dx.doi.org/10.1016/S0377-0273(02)00471-7

  • [3] Buttner R., Dellino P., La Volpe L., Lorenz V., Zimanowski B., Thermohydraulic explosions in phreatomagmatic eruptions as evidenced by the comparison between pyroclasts and products from Molten Fuel Coolant Interaction experiments, J. Geophys. Res.-Sol. Ea., 2002, 107, 2277 http://dx.doi.org/10.1029/2001JB000511

  • [4] Buttner R., Dellino P., Zimanowski B., Identifying magma-water interaction from the surface features of ash particles, Nature, 1999, 401, 688–690 http://dx.doi.org/10.1038/44364

  • [5] Morrissey M.M., Zimanowski B., Wohletz K., Büttner R., Phreatomagmatic fragmentation. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J., (Eds), Encyclopedia of Volcanoes, Academic Press, New York, 2000, 431–446

  • [6] Zimanowski B., Buttner R., Lorenz V., Hafele H.G., Fragmentation of basaltic melt in the course of explosive volcanism, J. Geophys. Res.-Sol. Ea., 1997, 102, 803–814 http://dx.doi.org/10.1029/96JB02935

  • [7] Frohlich G., Zimanowski B., Lorenz V., Explosive thermal interactions between molten lava and water, Exp. Therm. Fluid Sci., 1993, 7, 319–332 http://dx.doi.org/10.1016/0894-1777(93)90055-N

  • [8] Buttner R., Dellino P., Raue H., Sonder I., Zimanowski B., Stress-induced brittle fragmentation of magmatic melts: Theory and experiments, J. Geophys. Res.-Sol. Ea., 2006, 111

  • [9] Dellino P., LaVolpe L., Image processing analysis in reconstructing fragmentation and transportation mechanisms of pyroclastic deposits. The case of Monte Pilato-Rocche Rosse eruptions, Lipari (Aeolian islands, Italy), J. Volcanol. Geoth. Res., 1996, 71, 13–29 http://dx.doi.org/10.1016/0377-0273(95)00062-3

  • [10] Heiken G.H., Wohletz K., Fragmentation processes in explosive volcanic eruptions. In: Fisher R.V., Smith G.A. (Eds.), Sedimentation in Volcanic Settings, Society for Sedimentary Geology, 1991, 19–26

  • [11] Wohletz K.H., Explosive magma-water interactions: Thermodynamics, explosion mechanisms, and field studies, B. Volcanol., 1986, 48, 245–264 http://dx.doi.org/10.1007/BF01081754

  • [12] Wohletz K.H., McQueen R.G., Experimental studies in hydromagmatic volcanism. In: Studies in Geophysics: Explosive volcanism: Inception, evolution and haz-ards, National Academy Press, Washington, 1984, 158–169

  • [13] Wohletz K.H., Mechanisms of hydrovolcanic pyroclast formation - Grain-size, scanning electron-microscopy, and experimental studies, J. Volcanol. Geoth. Res., 1983, 17, 31–63 http://dx.doi.org/10.1016/0377-0273(83)90061-6

  • [14] Dellino P., Kyriakopoulos K., Phreatomagmatic ash from the ongoing eruption of Etna reaching the Greek island of Cefalonia, J. Volcanol. Geoth. Res., 2003, 126, 341–345 http://dx.doi.org/10.1016/S0377-0273(03)00154-9

  • [15] Dellino P., Liotino G., The fractal and multifractal dimension of volcanic ash particles contour: a test study on the utility and volcanological relevance, J. Volcanol. Geoth. Res., 2002, 113, 1–18 http://dx.doi.org/10.1016/S0377-0273(01)00247-5

  • [16] Dellino P., Isaia R., La Volpe L., Orsi G., Statistical analysis of textural data from complex pyroclastic sequences: implications for fragmentation processes of the Agnano-Monte Spina Tephra (4.1 ka), Phlegraean Fields, southern Italy, B. Volcanol., 2001, 63, 443–461

  • [17] Dellino P., La Volpe L., Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy), J. Volcanol. Geoth. Res., 2000, 96, 57–78 http://dx.doi.org/10.1016/S0377-0273(99)00140-7

  • [18] Dellino P., Phreatomagmatic deposits: fragmentation, transportation and deposition mechanisms, Terra Nostra, 2000, 6, 99–105

  • [19] Lautze N.C., Houghton, B.F., Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy, B. Volcanol., 2007, 69, 445–460 http://dx.doi.org/10.1007/s00445-006-0086-1

  • [20] Sable J.E., Houghton B.F., Del Carlo P., Coltelli M., Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic Plinian eruption: Karoly Németh Evidence from clast microtextures, J. Volcanol. Geoth. Res., 2006, 158, 333–354 http://dx.doi.org/10.1016/j.jvolgeores.2006.07.006

  • [21] Németh K., Monogenetic volcanic fields;their origin, sedimentary record, relationship with polygenetic volcanism, and how monogenetic they are. In: Canon-Tapia E., Szakacs A. (Eds.) What is a volcano? Geological Society of America, 2010 (in press)

  • [22] Kienle J., Kyle P.R., Self S., Motyka R.J., Lorenz V., Ukinrek Maars, Alaska.1. April 1977 Eruption Sequence, Petrology And Tectonic Setting, J. Volcanol. Geoth. Res., 1980, 7, 11–37 http://dx.doi.org/10.1016/0377-0273(80)90018-9

  • [23] Németh K., Cronin S.J., Charley D., Harrison M., Garae E., Exploding lakes in Vanuatu -“Surtseyan-style” eruptions witnessed on Ambae Island, Episodes, 2006, 29, 87–92

  • [24] Maria A., Carey S., Using fractal analysis to quantitatively characterize the shapes of volcanic particles, J. Geophys. Res.-Sol. Ea., 2002, 107, 2283 http://dx.doi.org/10.1029/2001JB000822

  • [25] Carey R.J., Houghton B.F., Sable J.E., Wilson C.J.N., Contrasting grain size and componentry in complex proximal deposits of the 1886 Tarawera basaltic Plinian eruption, B. Volcanolo., 2007, 69, 903–926 http://dx.doi.org/10.1007/s00445-007-0117-6

  • [26] Carey S., Maria A., Sigurdsson H., Use offractal analysis for discrimination of particles from primary and reworked jokulhlaup deposits in SE Iceland, J. Volcanol. Geoth. Res., 2000, 104, 65–80 http://dx.doi.org/10.1016/S0377-0273(00)00200-6

  • [27] Wada K., Fractal structure of heterogeneous ejecta from the Me-Akan Volcano, Eastern Hokkaido, Japan- Implications for mixing mechanism in a volcanic conduit, J. Volcanol. Geoth. Res., 1995, 66, 69–79 http://dx.doi.org/10.1016/0377-0273(94)00052-I

  • [28] Shea T., Houghton B.F., Gurioli L., Cashman K.V., Hammer J.E., Hobden B.J., Textural studies of vesicles in volcanic rocks: An integrated methodology, J. Volcanol. Geoth. Res., 2010, (in press)

  • [29] Dellino P., Lavolpe L., Fragmentation Versus Transportation Mechanisms in the Pyroclastic Sequence of Monte-Pilato Rocche-Rosse (Lipari, Italy), J. Volcanol. Geoth. Res. 1995, 64, 211–231 http://dx.doi.org/10.1016/0377-0273(94)00084-T

  • [30] Wohletz K., Krinsley D.H., Scanning electron microscopy of basaltic hydromagmatic ash, Scan. Electron Micros., 1978, 1-16

  • [31] Ersoy O., Aydar E., Gourgaud A., Bayhan H., Quantitative analysis on volcanic ash surfaces: Application of extended depth-of-field (focus) algorithm for light and scanning electron microscopy and 3D reconstruction, Micron, 2008, 39, 128–136 http://dx.doi.org/10.1016/j.micron.2006.11.010

  • [32] Ersoy O., Gourgaud A., Aydar E., Chinga G., Thouret J.C., Quantitative scanning-electron microscope analysis of volcanic ash surfaces: Application to the 1982–1983 Galunggung eruption (Indonesia), Geol. Soc. Am. Bull., 2007, 119, 743–752 http://dx.doi.org/10.1130/B26048.1

  • [33] Mangan M.T., Cashman K.V., The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains, J. Volcanol. Geoth.. Res., 1996, 73, 1–18 http://dx.doi.org/10.1016/0377-0273(96)00018-2

  • [34] Mangan M.T., Cashman K.V., Newman, S., Vesiculation of basaltic magma during eruption, Geology, 1993, 21, 157–160 http://dx.doi.org/10.1130/0091-7613(1993)021<0157:VOBMDE>2.3.CO;2

  • [35] Allen S.R., Bryner V.F., Smith, I.E.M., Ballance, P.F., Facies analysis of pyroclastic deposits within basaltic tuff-rings of the Auckland volcanic field, New Zealand, New Zeal. J. Geol. Geoph., 1996, 39, 309–327 http://dx.doi.org/10.1080/00288306.1996.9514714

  • [36] Von Veh M.W., Nemeth K., An assessment of the alignments of vents on geostatistical analysis in the Auckland Volcanic Field, New Zealand, Geomorphologie, 2009, 175-186

  • [37] Lorenz V., Kurszlaukis S., Root zone processes in the phreatomagmatic pipe emplacement model and consequences for the evolution of maar-diatreme volcanoes, J. Volcanol. Geoth. Res., 2007, 159, 4–32 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.019

  • [38] Lorenz V., Maar-diatreme volcanoes, their formation, and their setting in hard-rock or soft-rock environments, Geolines, 2003, 15, 72–83

  • [39] Németh K., Budai T., Diatremes cut through the Triassic carbonate platforms in the Dolomites? Evidences from and around the Latemar, northern Italy, Episodes, 2009, 32, 74–83

  • [40] Németh K., Martin U., Haller M.J., Alric V.L., Cenozoic diatreme field in Chubut (Argentina) as evidence of phreatomagmatic volcanism accompanied with extensive Patagonian plateau basalt volcanism? Episodes, 2007, 30, 217–223

  • [41] White J.D.L., Maar-diatreme phreatomagmatism at Hopi Buttes, Navajo Nation (Arizona), USA, B. Volcanol., 1991, 53, 239–258 http://dx.doi.org/10.1007/BF00414522

  • [42] Lorenz V., Maars and diatremes of phreatomagmatic origin: a review, Transactions of the Geological Society of South Africa, 1985, 88, 459–470

  • [43] Martin U., Németh K., Mio/Pliocene phreatomagmatic volcanism in the western Pannonian Basin, Geologica Hungarica Series Geologica, Geological Institute of Hungary, Budapest, 2004

  • [44] Suhr P., Goth K., Lorenz V., Long lasting subsidence and deformation in and above maar-diatreme volcanoes — a never ending story, Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 2006, 157, 491–511 http://dx.doi.org/10.1127/1860-1804/2006/0157-0491

  • [45] Harangi S., Neogene magmatism in the Alpine-Pannonian Transition Zone — a model for melt generation in a complex geodynamic setting, Acta Vulcanologica, 2001, 13, 25–39

  • [46] Seghedi I., Downes H., Szakacs A., Mason P.R.D., Thirlwall M.F., Rosu E., Pecskay Z., Marton E., et al., Neogene-Quaternary magmatism and geodynam-Volcanic glass textures, shape characteristics and compositions of phreatomagmatic rock units from the Western Hungarian monogenetic volcanic fields and their implications for magma fragmentation ics in the Carpathian-Pannonian region: a synthesis, Lithos, 2004, 72, 117–146 http://dx.doi.org/10.1016/j.lithos.2003.08.006

  • [47] Szabó C., Harangi S., Csontos L., Review of Neogene and Quaternary volcanism of the Carpathian Pannonian Region, Tectonophysics, 1992, 208, 243–256 http://dx.doi.org/10.1016/0040-1951(92)90347-9

  • [48] Cloetingh S., Lankreijer A., Lithospheric memory and stress field controls on polyphase deformation of the Pannonian basin-Carpathian system, Mar. Petrol. Geol., 2001, 18, 3–11 http://dx.doi.org/10.1016/S0264-8172(00)00040-4

  • [49] Bada G., Horváth F., On the structure and tectonic evolution of the Pannonian basin and surrounding orogens. Acta Geologica Hungarica, 2001, 44, 301–327

  • [50] Horvath F., Royden L., The Pannonian Basin — a Study in Basin Evolution — Reply, Am. Assoc. Petr. Geol. B., 1990, 74, 1281–1282

  • [51] Bada G., Horvath F., Gerner P., Fejes I., Review of the present-day geodynamics ofthe Pannonian basin: progress and problems, J. Geodyn., 1999, 27, 501–527 http://dx.doi.org/10.1016/S0264-3707(98)00013-1

  • [52] Bada G., Horvath F., Cloetingh S., Coblentz D.D., Toth T., Role of topography-induced gravitational stresses in basin inversion: The case study of the Pannonian basin, Tectonics, 2001, 20, 343–363 http://dx.doi.org/10.1029/2001TC900001

  • [53] Pécskay Z., Lexa J., Szakács A., Balogh K., Seghedi I., Konecny V., Kovács M., Márton E., et al., Space and time distribution of Neogene-Quaternary volcanism in the Carpatho-Pannonian region, Acta Vulcanologica, 1995, 7, 15–28

  • [54] Balogh K., Pécskay Z., K/Ar and Ar/Ar geochronological studies in the Pannonian-Carpathians-Dinarides (PANCARDI) region, Acta Geologica Academiae Scientiarum Hungaricae, 2001, 44, 281–301

  • [55] Szabó C., Falus G., Zajácz Z., Kovács I., Bali E., Composition and evolution of lithosphere beneath the Carpathian-Pannonian Region: a review, Tectonophysics, 2004, 393, 119–137 http://dx.doi.org/10.1016/j.tecto.2004.07.031

  • [56] Falus G., Szabó C., Vaselli O., Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry, Terra Nova, 2000, 12, 295–302 http://dx.doi.org/10.1046/j.1365-3121.2000.00313.x

  • [57] Németh K., Martin U., Large hydrovolcanic field in the Pannonian Basin: general characteristics of the Bakony- Balaton Highland Volcanic Field, Hungary, Acta Vulcanologica, 1999, 11, 271–282

  • [58] Balogh K., Németh K., Evidence for the neogene small-volume intracontinental volcanism in western Hungary: K/Ar geochronology of the Tihany Maar volcanic complex, Geologica Carpathica, 2005, 56, 91–99

  • [59] Balogh K., Itaya T., Németh K., Martin U., Wijbrans J., Than N.X., Study of controversial K/Ar and 40Ar/39Ar ages of the Pliocene alkali basalt of Hegyestii, Balaton Highland, Hungary: a progress report. Mineralia Slovaca, 2005, 37, 298–301

  • [60] Wijbrans J., Németh K., Martin U., Balogh K., Ar-40/Ar-39 geochronology of Neogene phreatomagmatic volcanism in the western Pannonian Basin, Hungary, J. Volcanol. Geoth. Res., 2007, 164, 193–204 http://dx.doi.org/10.1016/j.jvolgeores.2007.05.009

  • [61] Németh K., Martin U., Late Miocene paleo-geomorphology of the Bakony-Balaton Highland Volcanic Field (Hungary) using physical volcanology data, Zeitschrift für Geomorphologie, 1999, 43, 417–438.

  • [62] Martin U., Németh K., Eruptive and depositional history of a Pliocene tuff ring that developed in a fluviolacustrine basin: Kissomlyó Volcano (Western Hungary), J. Volcanol. Geoth. Res., 2005, 147, 342–356 http://dx.doi.org/10.1016/j.jvolgeores.2005.04.019

  • [63] Sacchi M., Horvth F., Magyari O., Role of unconformity-bounded units in the stratigraphy of the continental record; a case study from the late Miocene of the western Pannonian Basin, Hungary. In: Durand B., Jolivet L., Horváth F., Ranne M., (Eds.), The Mediterranean basins; Tertiary extension within the Alpine Orogen., Geological Society of London, London, 1999, 357–390

  • [64] Magyar I., Geary D.H., Muller P., Paleogeographic evolution of the Late Miocene Lake Pannon in Central Europe, Palaeogeogr. Palaeoec., 1999, 147, 151–167 http://dx.doi.org/10.1016/S0031-0182(98)00155-2

  • [65] Auer A., Martin U., Németh K., The Fekete-hegy (Balaton Highland Hungary) “soft-substrate” and “hard-substrate” maar volcanoes in an aligned volcanic complex - Implications for vent geometry, subsurface stratigraphy and the palaeoenvironmental setting, J. Volcanol. Geoth. Res., 2007, 159, 225–245 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.008

  • [66] Németh K., Martin U., Harangi S., Miocene phreatomagmatic volcanism at Tihany (Pannonian Basin, Hungary), J. Volcanol. Geoth. Res., 2001, 111, 111–135 http://dx.doi.org/10.1016/S0377-0273(01)00223-2

  • [67] Németh K., Martin U., Csillag G., Erosion rate calculation based on eroded monogenetic alkaline basaltic volcanoes ofthe Mio/Pliocene Bakony-Balaton Highland Volcanic Field, Hungary, Geolines, 2003, 15, 93–97

  • [68] Martin U., Németh K., Blocky versus fluidal peperite textures developed in volcanic conduits, vents and crater lakes of phreatomagmatic volcanoes in Mio/Pliocene volcanic fields of Western Hungary, J. Volcanol. Geoth. Res., 2007, 159, 164–178 http://dx.doi.org/10.1016/j.jvolgeores.2006.06.010

  • [69] Németh K., Martin U., Csillag G., Lepusztult maar/diatrema szerkezetek a Bakony-Balaton Felvidék Vulkáni Területröl (Eroded maar/diatrema structures from the Bakony-Balaton Highland Volcanic Field), Annual Report of the Geological Institute of Hungary, 2003, 83–99, (in Hungarian) Karoly Németh

  • [70] Petrelli M., Poli G., Perugini D., Peccerillo A., Petrograph: a New Software to Visualize, Model, and Present Geochemical Data in Igneous Petrology, Geochem. Geophys. Geosyst., 2005, 6 (Q07011), DOI 10.1029/2005GC000932.

  • [71] Buttner R., Zimanowski B., Mohrholz C.O., Kummel R., Analysis of thermohydraulic explosion energetics, J. Appl. Phys., 2005, 98, 043524 http://dx.doi.org/10.1063/1.2033149

  • [72] Zimanowski B., Buttner R., Lorenz V., Premixing of magma and water in MFCI experiments, B. Volcanol., 1997, 58, 491–495 http://dx.doi.org/10.1007/s004450050157

  • [73] Maria A., Carey S., Quantitative discrimination of magma fragmentation and pyroclastic transport processes using the fractal spectrum technique, J. Volcanol. Geoth. Res., 2007, 161, 234–246 http://dx.doi.org/10.1016/j.jvolgeores.2006.12.006

  • [74] Mandelbrot B.B., How long is the coast of Britain? Statistical self-similarity and fractional dimensions, Science, 1967, 156, 636–638 http://dx.doi.org/10.1126/science.156.3775.636

  • [75] Mandelbrot B.B., Multifractal power law distributions: Negative and critical dimensions and other “anomalies,” explained by a simple example, J. Stat. Phys., 2003, 110, 739–774 http://dx.doi.org/10.1023/A:1022159802564

  • [76] Kindratenko V.V., VanEspen P.J.M., Treiger B.A., Van-Grieken R.E., Characterisation of the shape of microparticles via fractal and Fourier analyses of scanning electron microscope images, Mikrochimica Acta, 13, 1996, 355–361

  • [77] Ouillon G., Sornette D., Unbiased multifractal analysis: Application to fault patterns, Geophys. Res. Lett., 1996, 23, 3409–3412 http://dx.doi.org/10.1029/96GL02379

  • [78] Clark N., Three techniques for implementing digital fractal analysis of particle shapes, Powder Technology, 1986, 46, 132139 http://dx.doi.org/10.1016/0032-5910(86)80097-3

  • [79] Clark N.N., Maeder A.J., Reilly S., Data Scatter in Richardson Plots, Particle & Particle Systems Characterization, 1992, 9, 9–18 http://dx.doi.org/10.1002/ppsc.19920090103

  • [80] Orford J.D., Whalley W.B., The use of the fractal dimension to quantify the morphology of irregular-shaped particles, Sedimentology, 1983, 30, 655–668 http://dx.doi.org/10.1111/j.1365-3091.1983.tb00700.x

  • [81] Heiken G.H., An atlas of volcanic ash., Smithsonian Earth Science Contributions, Smithsonian Press, Washington, 1974, 12, 1–101

OPEN ACCESS

Journal + Issues

Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an international, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Geology, Geophysics, Geography, Geomicrobiology, Geotourism, Oceanography and Hydrology, Glaciology, Atmospheric Sciences, Speleology, Volcanology, Soil Science, Geoinformatics, Geostatistics. The journal is published in the Open Access model.

Search