The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina

Karoly Németh 1 , Corina Risso 2 , Francisco Nullo 3  and Gabor Kereszturi
  • 1 Volcanic Risk Solutions, Massey University, Private Bag 11 222, Palmerston North, New Zealand
  • 2 Departamento de Geología, Area Riesgo Volcánico, FCEyN-Universidad de Buenos Aires, Buenos Aires, Argentina
  • 3 CONICET-SEGEMAR, Buenos Aires, Argentina
  • 4 Geological Institute of Hungary, Stefánia út 14, Budapest, 1143, Hungary

Abstract

Payún Matru Volcanic Field is a Quaternary monogenetic volcanic field that hosts scoria cones with perfect to breached morphologies. Los Morados complex is a group of at least four closely spaced scoria cones (Los Morados main cone and the older Cones A, B, and C). Los Morados main cone was formed by a long lived eruption of months to years. After an initial Hawaiian-style stage, the eruption changed to a normal Strombolian, conebuilding style, forming a cone over 150 metres high on a northward dipping (∼4°) surface. An initial cone gradually grew until a lava flow breached the cone’s base and rafted an estimated 10% of the total volume. A sudden sector collapse initiated a dramatic decompression in the upper part of the feeding conduit and triggered violent a Strombolian style eruptive stage. Subsequently, the eruption became more stable, and changed to a regular Strombolian style that partially rebuilt the cone. A likely increase in magma flux coupled with the gradual growth of a new cone caused another lava flow outbreak at the structurally weakened earlier breach site. For a second time, the unstable flank of the cone was rafted, triggering a second violent Strombolian eruptive stage which was followed by a Hawaiian style lava fountain stage. The lava fountaining was accompanied by a steady outpour of voluminous lava emission accompanied by constant rafting of the cone flank, preventing the healing of the cone. Santa Maria is another scoria cone built on a nearly flat pre-eruption surface. Despite this it went through similar stages as Los Morados main cone, but probably not in as dramatic a manner as Los Morados. In contrast to these examples of large breached cones, volumetrically smaller cones, associated to less extensive lava flows, were able to heal raft/collapse events, due to the smaller magma output and flux rates. Our evidence shows that scoria cone growth is a complex process, and is a consequence of the magma internal parameters (e.g. volatile content, magma flux, recharge, output volume) and external conditions such as inclination of the pre-eruptive surface where they grew and thus gravitational instability.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Valentine G.A., Gregg T.K.P., Continental basaltic volcanoes — Processes and problems. J. Volcanol. Geoth. Res., 2008, 177, 857–873 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.050

  • [2] Németh K., Monogenetic volcanic fields: Origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañón-Tapia E., Szakács A. (Eds), What Is a Volcano Geol. S. Am. S., 2010, 470, 43–67

  • [3] Walker G.P.L., Basaltic-volcano systems, In: Prichard H.M., Alabaster T., Harris N.B.W., Nearly C.R. (Eds), Magmatic Processes and Plate Tectonics. Geological Society, London, Special Publications, 76, 3–38, 1993

  • [4] Brenna M., Cronin S.J., Smith I.E.M., Sohn Y.K., Németh K., Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contrib. Miner. Petr., 2010, 160, 931–950, DOI: 10.1007/s00410-010-0515-1 http://dx.doi.org/10.1007/s00410-010-0515-1

  • [5] Kereszturi G., Csillag G., Németh K., Sebe K., Kadosa B., Jáger V., Volcanic architecture, eruption mechanism and landform evolution of a Plio/Pleistocene intracontinental basaltic polycyclic monogenetic volcano from the Bakony-Balaton Highland Volcanic Field, Hungary. Cent. Eur. J. Geosci., 2010, 2, 362–384, DOI: 10.2478/v10085-010-0019-2 http://dx.doi.org/10.2478/v10085-010-0019-2

  • [6] Vespermann D., Schmincke H.-U., Scoria cones and tuff rings. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 683–694

  • [7] Luhr J.F., Simkin T., Paricutin. The volcano born in a Mexican cornfield. Geosciences Press, Phoenix, 1993

  • [8] McGetchin T.R., Settle M., Chouet B.A., Geologic and photoballistic studies at Mt Etna and Stromboli. T. Am. Geophys. Un., 1972, 53, 1–533

  • [9] Chouet B.A., Hamisevi N., McGetchin T.R., Photoballistic analysis of main volcanic jet, Stromboli, Italy. T. Am. Geophys. Un., 1973, 54, 1–510

  • [10] Chouet B., Hamisevi N., McGetchin T.R., Photobal-listics of volcanic jet activity at Stromboli, Italy. J. Geophys. Res., 1974, 79, 4961–4976 http://dx.doi.org/10.1029/JB079i032p04961

  • [11] McGetchin T.R., Settle M., Chouet B.A., Cinder cone growth modeled after Northeast Crater, Mount-Etna, Sicily. J. Geophys. Res., 1974, 79, 3257–3272 http://dx.doi.org/10.1029/JB079i023p03257

  • [12] Wilson L., Head J.W., Ascent and eruption of basaltic magma on Earth and Moon. J. Geophys. Res., 1981, 86, 2971–3001 http://dx.doi.org/10.1029/JB086iB04p02971

  • [13] Head J.W., Wilson L., Basaltic pyroclastic eruptions: influence of gas release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J. Volcanol. Geoth. Res., 1989, 37, 261–271 http://dx.doi.org/10.1016/0377-0273(89)90083-8

  • [14] Riedel C., Ernst G.G.J., Riley M., Controls on the growth and geometry of pyroclastic constructs. J. Volcanol. Geoth. Res., 2003, 127, 121–152 http://dx.doi.org/10.1016/S0377-0273(03)00196-3

  • [15] Houghton B.F., Hackett W.R., Strombolian and phreatomagmatic deposits of Ohakune Craters, Ru-apehu, New Zealand; a complex interaction between external water and rising basaltic magma. J. Volcanol. Geoth. Res., 1984, 21, 207–231 http://dx.doi.org/10.1016/0377-0273(84)90023-4

  • [16] Houghton B.F., Schmincke H.U., Rothenberg scoria cone, East Eifel; a complex strombolian and phreatomagmatic volcano. B. Volcanol. 1989, 52, 28–48 http://dx.doi.org/10.1007/BF00641385

  • [17] Houghton B.F., Wilson C.J.N., Smith I.E.M., Shallow-seated controls on styles of explosive basaltic volcanism: a case study from New Zealand. J. Volcanol. Geoth. Res., 1999, 91, 97–120 http://dx.doi.org/10.1016/S0377-0273(99)00058-X

  • [18] Genareau K., Valentine G.A., Moore G., Hervig R.L., Mechanisms for transition in eruptive style at a mono-genetic scoria cone revealed by microtextural analyses (Lathrop Wells volcano, Nevada, USA). B. Volcanol., 2010, 72, 593–607 http://dx.doi.org/10.1007/s00445-010-0345-z

  • [19] Keating G.N., Valentine G.A., Krier D.J., Perry F.V., Shallow plumbing systems for small-volume basaltic volcanoes. B. Volcanol., 2008, 70, 563–582 http://dx.doi.org/10.1007/s00445-007-0154-1

  • [20] Doubik P., Hill B.E., Magmatic and hydromagmatic conduit development during the 1975 Tolbachik Eruption, Kamchatka, with implications for hazards assessment at Yucca Mountain, NV. J. Volcanol. Geoth. Res., 1999, 91, 43–64 http://dx.doi.org/10.1016/S0377-0273(99)00052-9

  • [21] Cashman K.V., Sturtevant B., Papele P., Navon O., Magmatic fragmentation. In: Sigurdsson H., Houghton B., McNutt S., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 421–430

  • [22] Wolff J.A., Sumner J.M., Lava fountains and their products. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 321–329

  • [23] Walker G.P.L., Basaltic volcanoes and volcanic systems. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes. Academic Press, 2000, 283–290

  • [24] Wilson L., Parfitt E.A., Head J.W., Explosive volcanic-eruptions.8. The role of magma recycling in controlling the behavior of Hawaiian-style lava fountains. Geophys. J. Int., 1995, 121, 215–225 http://dx.doi.org/10.1111/j.1365-246X.1995.tb03522.x

  • [25] Keating G.N., Pelletier J.D., Valentine G.A., Statham W., Evaluating suitability of a tephra dispersal model as part of a risk assessment framework. J. Volcanol. Geoth. Res., 2008, 177, 397–404 http://dx.doi.org/10.1016/j.jvolgeores.2008.06.007

  • [26] Valentine G.A., Krier D.J., Perry F.V., Heiken G., Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J. Volcanol. Geoth. Res., 2007, 161, 57–80 http://dx.doi.org/10.1016/j.jvolgeores.2006.11.003

  • [27] Valentine G.A., Perry F.V., Krier D., Keating G.N., Kelley R.E., Coghill A.H., Small-volume basaltic volcanoes: Eruptive products and processes, and posteruptive geomorphic evolution in Crater Flat (Pleistocene), southern Nevada. Geol. Soc. Am. Bull., 2006, 118, 1313–1330 http://dx.doi.org/10.1130/B25956.1

  • [28] Arrighi S., Principe C., Rosi M., Violent strombolian and subplinian eruptions at Vesuvius during post-1631 activity. B. Volcanol., 2001, 63, 126–150 http://dx.doi.org/10.1007/s004450100130

  • [29] Thordarson T., Self S., The Laki (Skaftar-Fires) and Grimsvotn Eruptions in 1783–1785. B. Volcanol., 1993, 55, 233–263 http://dx.doi.org/10.1007/BF00624353

  • [30] Martin U., Nemeth K., How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J. Volcanol. Geoth. Res., 2006, 155, 104–118 http://dx.doi.org/10.1016/j.jvolgeores.2006.02.012

  • [31] Foshag W.F., Gonzalez R.J., Birth and development of Paricutin volcano, Mexico. United States Geological Survey Bulletin, 1956, 965-D, 355–489

  • [32] Newton A.J., Metcalfe S.E., Davies S.J., Cook G., Barker P., Telford R.J., Late Quaternary volcanic record from lakes of Michoacan, central Mexico. Quaternary Sci. Rev., 2005, 24, 91–104 http://dx.doi.org/10.1016/j.quascirev.2004.07.008

  • [33] Hasenaka T., Carmichael I.S.E., The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J. Volcanol. Geoth. Res., 1985, 25, 105–124 http://dx.doi.org/10.1016/0377-0273(85)90007-1

  • [34] Martin, U. and Németh, K., How Strombolian is a “Strombolian” scoria cone? Some irregularities in scoria cone architecture from the Transmexican Volcanic Belt, near Volcan Ceboruco, (Mexico) and Al Haruj (Libya). J. Volcanol. Geoth. Res., 2006, 155, 104–118 http://dx.doi.org/10.1016/j.jvolgeores.2006.02.012

  • [35] Vergniolle S., Brandeis G., Mareschal J.C., Strombolian explosions. 2. Eruption dynamics determined from acoustic measurements. J. Geophys. Res. Sol. Ea., 1996, 101, 20449–20466 http://dx.doi.org/10.1029/96JB01925

  • [36] Vergniolle S., Brandeis G., Strombolian explosions. 1. A large bubble breaking at the surface of a lava column as a source of sound. J. Geophys. Res. Sol. Ea., 1996, 101, 20433–20447 http://dx.doi.org/10.1029/96JB01178

  • [37] Vergniolle S., Bubble size distribution in magma chambers and dynamics of basaltic eruptions. Earth Planet. Sc. Lett., 1996, 140, 269–279 http://dx.doi.org/10.1016/0012-821X(96)00042-8

  • [38] Vergniolle S., Manga M., Hawaiian and strombolian eruptions. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix, J. (Eds), Encyclopedia of Volcanoes, Academic Press, 2000, 447–461

  • [39] Jaupart C., Vergniolle S., Laboratory Models of Hawaiian and Strombolian Eruptions. Nature, 1988, 331, 58–60 http://dx.doi.org/10.1038/331058a0

  • [40] Blackburn E.A., Sparks R.S.J., Mechanism and dynamics of strombolian activity. J. Geol. Soc. London, 1976, 132, 429–440 http://dx.doi.org/10.1144/gsjgs.132.4.0429

  • [41] Jaupart C., Magma ascent at shallow levels. In: Sigurdsson H., Houghton B.F., McNutt S.R., Rymer H., Stix J. (Eds), Encyclopedia of Volcanoes, Academic Press, 2000, 237–245

  • [42] Parfitt E.A., A discussion of the mechanisms of explosive basaltic eruptions. J. Volcanol. Geoth. Res., 2004, 134, 77–107 http://dx.doi.org/10.1016/j.jvolgeores.2004.01.002

  • [43] Parfitt E.A., Wilson L., Explosive volcanic-eruptions. 9. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys. J. Int., 1995, 121, 226–232 http://dx.doi.org/10.1111/j.1365-246X.1995.tb03523.x

  • [44] Parfitt E.A., Wilson L., Neal C.A., Factors influencing the height of Hawaiian lava fountains: Implications for the use of fountain height as an indicator of magma gas content. B. Volcanol., 1995, 57, 440–450 http://dx.doi.org/10.1007/BF00300988

  • [45] Valentine G.A., Krier D., Perry F.V., Heiken G., Scoria cone construction mechanisms, Lathrop Wells volcano, southern Nevada, USA. Geology, 2005, 33, 629–632 http://dx.doi.org/10.1130/G21459.1

  • [46] Carracedo J.C., Rodriguez Badiola E., Soler V., The 1730–1736 eruption of Lanzarote, Canary slands: a long, high-magnitude basaltic fissure eruption. J. Volcanol. Geoth. Res. 1992, 53, 239–250 http://dx.doi.org/10.1016/0377-0273(92)90084-Q

  • [47] Sumner J.M., Blake S., Matela R.J., Wolff J.A., Spatter. J. Volcanol. Geoth. Res., 2005, 142, 49–65 http://dx.doi.org/10.1016/j.jvolgeores.2004.10.013

  • [48] Sumner J.M., Formation of clastogenic lava flows during fissure eruption and scoria cone collapse: the 1986 eruption of Izu-Oshima Volcano, eastern Japan. B. Volcanol., 1998, 60, 195–212 http://dx.doi.org/10.1007/s004450050227

  • [49] Németh K., The morphology and origin of wide craters at Al Haruj al Abyad, Libya: maars and phreatomagmatism in a large intracontinental flood lava field? Zeitschrift für Geomorphologie, 2004, 48, 417–439

  • [50] Németh K., Suwesi K.S., Peregi Z., Gulácsi Z., Ujszászi J., Plio/Pleistocene flood basalt related scoria and spatter cones, rootless lava flows, and pit craters, Al Haruj Al Abyad, Libya. Geolines, 2003, 98–103

  • [51] Holm R.F., Significance of agglutinate mounds on lava flows associated with monogenetic cones — An example at Sunset-crater, Northern Arizona. Geol. Soc. Am. Bull., 1987, 99, 319–324 http://dx.doi.org/10.1130/0016-7606(1987)99<319:SOAMOL>2.0.CO;2

  • [52] Bermúdez A., Delpino D., Frey F., Saal A., Los basaltos de retroarco extraandinos. In: Ramos V. (Ed), Geología y Recursos Naturales de Mendoza — 12° Congreso Geológico, 1993

  • [53] Bermúdez A., Los basaltos post-pliocenos entre los 36° y 37° de latitud, provincia de Mendoza, Argentina., IV Congreso Geológico Chileno, Actas (Antofagasta). 1985, 3, 52–67

  • [54] Cobbold P.R., Rosello E.A., Aptian to recent compressional deformation, foothills of the Neuquén basin, Argentina. Mar. Petrol. Geol., 2003, 20, 429–443 http://dx.doi.org/10.1016/S0264-8172(03)00077-1

  • [55] Kay S.M., Burns W.M., Copeland P.C., Mancilla O., Upper Cretaceous to Holocene magmatism and evidence for transiente miocene shallowing of the andean subduction zone under the northern Neuquén basin. In: Kay S.M., Ramos V.A. (Eds), Evolution of an Andean margin: A tectonic and magmatic view from the Andes to the Neuquén basin (35°–39°S lat). Geol. S. Am. S., 407, 19–60, DOI: 10.1130/2006.2407(02), 2006

  • [56] Galland O., Hallot E., Cobbold P.R., Buffet, G., Volcanism in a compressional Andean setting: A structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics, 2007, 26:, TC4010, DOI:10.1029/2006TC002011, 24 p.

  • [57] Folguera A., Naranjo J.A., Orihashi Y., Sumino H., Nagao K., Polanco E. Ramos V.A., Retroarc volcanism in the northern San Rafael Block (34°–35°30′S), southern Central Andes: Occurrence, age, and tectonic setting. J. Volcanol. Geoth. Res., 2009, 186, 169–185 http://dx.doi.org/10.1016/j.jvolgeores.2009.06.012

  • [58] Quidelleur X., Carlut J., Tchilinguirian P., Germa A., Gillot P.Y., Paleomagnetic directions from mid-latitude ssites in the southern hemisphere (Argentina): Contribution to time averaged field models. Phys. Earth Planet. In., 2009, 172, 199–209 http://dx.doi.org/10.1016/j.pepi.2008.09.012

  • [59] Germa A., Quidelleur X., Gillot P.Y., Tchilinguirian P., Volcanic evolution of the back-arc Pleistocene Payun Matru Volcanic Field (Argentina). J. S. Am. Earth Sci., 2010, 29, 717–750 http://dx.doi.org/10.1016/j.jsames.2010.01.002

  • [60] Kay S., Magmatic sources, tectonic setting and causes of Tertiary to recent Patagonian plateau magmatism (36° S to 52° S latitude). Actas del XV Congreso Geológico Argentino, Calafate., 2002, Actas III, 95–100

  • [61] Ramos V.A., Kay S.M., Overview of the tectonic evolution of southern Central Andes of Mendoza and Neuquén (35°–39°S lat). In: Kay S.M., Ramos V.A. (Eds), Evolution of an Andean margin: A tectonic andd magmatic view from the Andes to the Neuquén basin (35°–39°S lat). Geol. S. Am. S., 407, 1–17, 2006

  • [62] Ramos V.A., Folguera A., Payenia volcanic province in the Southern Andes: An appraisal of an exceptional Quaternary tectonic setting. J. Volcanol. Geoth. Res., 2010, [in press], DOI:10.1016/j.jvolgeores.2010.09.008

  • [63] Ramos V.A., Anatomy and global contex of the Andes: Main gelogic features and tge Andean orogenic cycle. In: Kay S.M., Ramos V.A., Dickinson W.R. (Eds), Backbone of Americas: Shallow ssubduction, Plateau Uplift, and Ridge and Terrane Collision. Geol. Soc. Am. Mem., 204, 31–65. DOI: 10.1130/2009.1204(02), 2009

  • [64] Llambías, E., Bertotto, G., Risso, C. and Hernando, I., El volcanismo cuaternario en el retroarco de Payunia: una revisión. Revista de la Asociación Geológica Argentina, 2010, [in press]

  • [65] González Díaz E.F., Descripción Geológica de la Hoja 30d, Payún Matrú, Servicio Nacional Minero Geológico. Boletín Buenos Aires, 1972, 130, 1–92

  • [66] Llambías E.J., Geología y petrología delvolcán Payún Matrú, Mendoza. Acta Geológica Lilloan, 1966, 7, 265–310

  • [67] Pasguarè C., Bistacchi A., Francalanci L., Bertotto G.W., Boari E., Massironi M., Rossotti A., Very long pahoehoe basaltic lava flows in the Payenia volcanic province (Mendoza and La Pampa), Argentina. Re-vista de la Asociación Geológica Argentina, 2008, 63, 131–149

  • [68] Nullo F., Hoja Geológica Cerro Campanario [1:250.000 Unpublished Geological Map and Report], Servicio Geológico Minero Argentino (SEGEMAR) [Buenos Aires]. 1985

  • [69] Hernando I., Llambías E.J., González P.D., Historia eruptiva y formación de la caldera del volcán Payún Matrú, retroarco andino del sureste de Mendoza. 17° Congreso Geológico Argentino, Jujuy, Actas, 2008, 1361–1362

  • [70] Bermúdez A., Delpino D., La Provincia Basáltica Andino Cuyana (35–37°L.S.). Revista de la Asociación Geológica Argentina, 1989, 44, 35–55

  • [71] Risso C., Nemeth K., Nullo F., Field Guide Payún Matru and Llancanelo Volcanics Fields, Malargüe — Mendoza. 3IMC. 3° International Maar Conference, April 14–17, 2009 [Guía de Campo a los campos volcánicos de Payún Matru y Llancanelo, Malargüe- Mendoza. 3° Conferencia Internacional sobre Maares, 14–17 April, 2009, Malargüe, Argentina] [in English and Spanish], Buenos Aires, 1–28, 2009

  • [72] Inbar M., Risso C., A morphological and morphometric analysis of a high density cinder cone volcanic field — Payún Matru, south-central Andes, Argentina. Zeitschrift für Geomorphologie, 2001, 45, 321–343

  • [73] Marchetti D.W., Cerling T.E., Evenson E.B., Gosse J.C., Martínez O., Cosmogenic exposures ages of lava flows that temporarily dammed the Río Grande and Río Salado, Medoza Province, Argentina. In: Kay S.M., Ramos V. (Eds), Backbone of the Americas, Patagonia to Alaska. Asociación Geológica Argentina, D9, 66, 2006

  • [74] Scandone R., Giacomelli L., Speranza F.F., Persistent activity and violent strombolian eruptions at Vesuvius between 1631 and 1944. J. Volcanol. Geoth. Res., 2008, 170, 167–180 http://dx.doi.org/10.1016/j.jvolgeores.2007.09.014

  • [75] Wong L.J., Larsen J.F., The Middle Scoria sequence: A Holocene violent strombolian, subplinian and phreatomagmatic eruption of Okmok volcano, Alaska. B. Volcanol., 72, 17–31

  • [76] Pioli L., Azzopardi B.J., Cashman K.V., Controls on the explosivity of scoria cone eruptions: Magma segregation at conduit junctions. J. Volcanol. Geoth. Res., 2009, 186, 407–415 http://dx.doi.org/10.1016/j.jvolgeores.2009.07.014

  • [77] Guilbaud M.N., Siebe C., Agustin-Flores J., Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of M,xico City. B. Volcanol., 2009, 71, 859–880 http://dx.doi.org/10.1007/s00445-009-0271-0

  • [78] Di Traglia F., Cimarelli C., de Rita D., Torrente D.G., Changing eruptive styles in basaltic explosive volcanism: Examples from Croscat complex scoria cone, Garrotxa Volcanic Field (NE Iberian Peninsula). J. Volcanol. Geoth. Res., 2009, 180, 89–109 http://dx.doi.org/10.1016/j.jvolgeores.2008.10.020

  • [79] Pioli L., Erlund E., Johnson E., Cashman K., Wallace R., Rosi M., Granados H.D., Explosive dynamics of violent Strombolian eruptions: The eruption of Paricutin Volcano 1943–1952 (Mexico). Earth Planet. Sc. Lett., 2008, 271, 359–368 http://dx.doi.org/10.1016/j.epsl.2008.04.026

  • [80] Riggs N.R., Duffield W.A., Record of complex scoria cone eruptive activity at Red Mountain, Arizona, USA, and implications for monogenetic mafic volcanoes. J. Volcanol. Geoth. Res., 2008, 178, 763–776 http://dx.doi.org/10.1016/j.jvolgeores.2008.09.004

  • [81] Ort M.H., Elson M.D., Anderson K.C., Duffield W.A., Samples T.L., Variable effects of cinder-cone eruptions on prehistoric agrarian human populations in the American southwest. J. Volcanol. Geoth. Res., 2008, 176, 363–376 http://dx.doi.org/10.1016/j.jvolgeores.2008.01.031

  • [82] Ort M.H., Elson M.D., Anderson K.C., Duffield W.A., Hooten J.A., Champion, D.E. and Waring, G., Effects of scoria-cone eruptions upon nearby human communities. Geol. Soc. Am. Bull., 2008, 120, 476–486 http://dx.doi.org/10.1130/B26061.1

OPEN ACCESS

Journal + Issues

Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an international, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Geology, Geophysics, Geography, Geomicrobiology, Geotourism, Oceanography and Hydrology, Glaciology, Atmospheric Sciences, Speleology, Volcanology, Soil Science, Geoinformatics, Geostatistics. The journal is published in the Open Access model.

Search