Contaminant transfer and hydrodispersive parameters in basaltic lava flows: artificial tracer test and implications for long-term management

G. Bertrand 1 , H. Celle-Jeanton 2 , F. Huneau 3 , A. Baillieux 4 , G. Mauri 5 , V. Lavastre 6 , G. Undereiner 7 , L. Girolami 8 , and J.S. Moquet 1
  • 1 Universidade de São Paulo, Instituto de Geociências, Centro de Perquisas de Aguas Subtarreneas, Rua do lago, 562, 05508-080, Sao Paulo, Brazil
  • 2 Clermont Université, Université Blaise Pascal, Laboratoire Magmas et Volcans, BP 10448, 63038 Clermont-Ferrand, France; CNRS, UMR 6524, LMV, 63038 Clermont-Ferrand, France; IRD, R 163, LMV, 63038 Clermont-Ferrand, France
  • 3 Université de Corse Pascal Paoli, Faculté des Sciences et Techniques, Laboratoire d’Hydrogéologie, Campus Grimaldi, BP 52, F-20250 Corte, France; CNRS, UMR 6134, SPE, F-20250 Corte, France
  • 4 Université d’Avignon, UMR 1114, INRA, EMMAH, Domaine St Paul Site agroparc, 84914 Avignon cedex 9, France
  • 5 Université de Neuchâtel, Centre d’Hydrogéologie et de Géothermie, Rue Emile-Argand 11, 2009 Neuchâtel, Switzerland
  • 6 CNRS, UMR 6524, LMV, 63038 Clermont-Ferrand, France; IRD, R 163, LMV, 63038 Clermont-Ferrand, France; Université de Lyon, Université Jean Monnet, Laboratoire Magmas et Volcans, 23 rue du Dr. Michelon, F-42023 Saint Etienne, France
  • 7 HYDRIAD Eau & Environnement, 443 Route de Saint-Geniès, 30730 Saint-Bauzély,France
  • 8 Université François Rabelais de Tours, EA 6293 Géo- Hydrosystèmes Continentaux (GéHCO), Parc de Grandmont, 37200 Tours, France

Abstract

The aim of this paper is to evaluate the vulnerability after point source contamination and characterize water circulations in volcanic flows located in the Argnat basin volcanic system (Chaîne des Puys, French Massif Central) using a tracer test performed by injecting a iodide solution. The analysis of breakthrough curves allowed the hydrodispersive characteristics of the massive lava flows to be determined. Large Peclet numbers indicated a dominant advective transport. The multimodal feature of breakthrough curves combined with high values of mean velocity and low longitudinal dispersion coefficients indicated thatwater flows in an environment analogous to a fissure system, and only slightly interacts with a low porosity matrix (ne < 1%). Combining this information with lava flow stratigraphy provided by several drillings allowed a conceptual scheme of potential contaminant behaviour to be designed. Although lava flows are vulnerable to point source pollution due to the rapid transfer of water within fractures, the saturated scoriaceous layers located between massive rocks should suffice to strongly buffer the transit of pollution through dilution and longer transit times. This was consistent with the low recovery rate of the presented tracer test.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Stieljes L., Hydrogéologie de l’îlevolcaniqueocéanique de Mayotte (archipel des Comores, océanIndien occidental) [Hydrogeology of the Mayotte volcanic island (Comores´ archipelgo, occidental Indian ocean], Hydrogeol. 1988, 2, 135–152

  • [2] Violette S., Ledoux E., Goblet P., Carbonnel J.P., Hydrologic and thermalmodelling of an active volcano: the Piton de la Fournaise, La Réunion Island, J. Hydrol. 1997, 191, 37–63

  • [3] Kulkarni H., Deolankar S.B., Lalwani A., Hydrogeological framework of the Deccan basalt groundwater systems, west-central India, Hydrogeological Journal 2000, 8, 368–378.

  • [4] Cruz J.V., Amaral C.S., Major ion chemistry of groundwater from perched-water bodies of the Azores (Portugal) volcanic archipelago, Applied Geochemistry 2004, 19, 445–459

  • [5] Dafny E., Burg A., Gvirtzman H., Deduction of groundwater flow regime in a basaltic aquifer using geochemical and isotopic data: The Golan Heights, Israel case study, Journal of Hydrology 2006, 330, 506–524

  • [6] Carrillo-Rivera J.J., Varsányi I., Kovács L., Cardona A., Tracing groundwater flow systems with hydrogeochemistry in contrasting geological environments, Water, Air, and Soil Pollution 2007, 184, 77–103

  • [7] Demlie M., Wohnlich S., Ayenew T., Major ion hydrochemistry and environmental isotope signatures as a tool in assessing groundwater occurrence and its dynamics in a fractured volcanic aquifer system located within a heavily urbanized catchment, central Ethiopia, Journal of Hydrology 2008, 353, 175–188

  • [8] D’Ozouville N., Auken E., Sorensen K., Violette S., DeMarsily G., Deffontaines B., et al.,Extensive perched aquifer and structural implications revealed by 3D resistivity mapping in a Galapagos volcano, Earth and Planetary Science Letters 2008, 269, 518– 522

  • [9] Bertrand G., Celle-Jeanton H., Huneau F., Loock S., Rénac C., Identification of different groundwater flowpaths within volcanic aquifers using natural tracers: Influence of lava flows morphology, (Argnat basin, Chaîne des Puys, France), Journal of Hydrology 2010, 391(3–4), 223–234

  • [10] Charlier J.B., Lachassagne P., Ladouche B., Cattan P., Moussa R., Voltz M., Structure and hydrogeological functioning of an insular tropical humid andesitic volcanic watershed: A multidisciplinary experimental approach, Journal of Hydrology 2011, 398, 155–170

  • [11] Koh D.C., Ha K., Lee K.S., Yoon Y.Y., Ko K.S., Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island, Journal of Hydrology 2012, 432–433, 61–74

  • [12] Lachassagne P., Aunay B., Frissant N., Guilbert M., Malard A., High-resolution conceptual hydrogeological model of complex basaltic volcanic islands: aMayotte, Comoros, case study, Terra Nova 2014, 26, 307–321.

  • [13] Council of the European Community, Directive 2000/60/EU of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Oflcial Journal of European Communities L327/1 23.10.2000 http://eur-lex.europa.eu/LexUriServ/LexUriServ. do?uri=OJ:L:2000:327:0001:0072:EN:PDF Accessed 24 Oct 2013

  • [14] Kløve B., Ala-aho P., Bertrand G., Boukalova Z., Ertürk A., Goldscheider N., et al., Groundwater Dependent Ecosystems: Part I – Hydroecological status and trends, Environmental Sciences and Policies 2011, 14(7), 770–781

  • [15] Kløve B., Ala-aho P., Allan A., Bertrand G., Druzynska E., Ertürk A., et al., Groundwater Dependent Ecosystems: Part II - Ecosystem services and management in Europe under risk of climate change and land-use intensification, Environmental Sciences and Policies 2011, 14(7), 782–793

  • [16] Bertrand G., Goldscheider N., Gobat J.M., Hunkeler D., Review: from multi-scale conceptualization of groundwater-dependent ecosystems to a classification system for management purposes, Hydrogeology Journal 2012, 20, 5–25

  • [17] Bertrand G., Masini J., Goldscheider N., Meeks J., Lavastre V., Celle-Jeanton H., et al., Determination of spatio-temporal variability of tree water uptake using stable isotopes (δ18O; δ2H) in an alluvial system supplied by a high-altitude watershed, Pfyn Forest, Switzerland, Ecohydrology 2014, 7(2), 319–333, DOI: 10.1002/eco.1347

  • [18] MacDonald G.A., Pahoehoe, a’a and block lava, American Journal of Science 1953, 251, 169–191

  • [19] Loock S., Cinématique, déformation et mise en place des laves

  • [Cinematic, deformation and setting of lava flows], PhD thesis, Université Blaise Pascal Clermont-Ferrand II, France (in French)

  • [20] Cook P.G., A guide to regional groundwater flowin fractured rock aquifers, CSIRO Australia Ed. 2003.

  • [21] Wood W.W., Fernandez L.A., Volcanic Rocks. In: Back W.,Rosenhein J.S. and Seaber P.R. (Ed.), The Geology of North America, Volume O–2, Hydrogeology, Geological Society of America 1988, 353–365

  • [22] Custodio E., Low permeability volcanics in the Canary Islands (Spain), Proceedings of the 18th Congress of the International Hydrogeologist Association 1985, 533–544.

  • [23] Join J.L., Coudray J., Caractérisation géostructurale des émergences et typologie des nappes d’altitude en milieu volcanique insulaire (île de la Réunion)

  • [Geostructural characterization of outlets and typology of altitude groundwater systems in insulary volcanic media], GeodinamicaActa 1993, 6(4), 243–254 (in French)

  • [24] Join J.-L., Folio J.-L., Robineau B., Aquifers and groundwater within active shield volcanoes, Evolution of conceptual models in the Piton de la Fournaise volcano, J VolcanolGeothermRes 2005, 147, 187–201.

  • [25] Nascimento Prada S., Silva M.O., Cruz J.V., Groundwater behaviour in Madeira, volcanic island (Portugal), Hydrogeology Journal 2005, 13, 800–812

  • [26] Livet M., Captages d’Argnat et des Grosliers. Avis sur les mesures de protection. Rapport technique

  • [Argnat and Les Grosliers catchments. Insights on their protection], Technical report, Syndicat Basse Limagne, Maringues, 2001 (in French)

  • [27] Livet M., D’Arcy A., Dupuy C. Synthèse hydrogéologique de l’Auvergne

  • [Hydrogeologic synthesis of Auvergne], In Roux J.C., (Ed.), Aquifères et eaux souterraines en France, BRGM/IAH Editions, 2006 (in French)

  • [28] Barbaud J.Y. (1983): Etude chimique et isotopique des aquifères du Nord de la Chaîne des Puys, Temps de transit et vulnérabilité des systèmes de Volvic et d’Argnat

  • [Chemical and isotopic study of the northern aquifers of the Chaîne des Puys. Transit time and vulnerability of the Volvic and Argnat systems], PhD, Université d’Avignon et des Pays du Vaucluse, 1983 (in French)

  • [29] Maloszewski P., Zuber A., On the theory of tracer experiments in fissured rocks with a porous matrix, Journal of Hydrology 1985, 79, 333–358

  • [30] Maloszewski P., Zuber A., Mathematical modelling of tracer behaviour in short-term experiments in fissured rocks, Water Resource Research 1990, 26, 1517–1528

  • [31] Vereecken H., Döring U., Hardelauf H., Jaeckel U., Hashagen U., Neuendorf O., Schwarze H., Seidemann R., Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment, Journal of Contaminant Hydrology 2000, 45, 329– 358.

  • [32] Reimus P.W., Haga M.J., Adams A.I., Callahan T.J., Turin H.J., Counce D.A., Testing and parameterizing a conceptual solute transport model in saturated fractured tuff using sorbing and nonsorbing tracers in cross-hole tracer tests, Journal of Contaminant Hydrology 2003, 62–63, 613–636

  • [33] Gelhar L.W., Welty C., Rehfeldt K., A critical review of data on field-scale dispersion in aquifers, Water Resources Research 1992, 28(7), 1955–1974

  • [34] Reimus P.W., Callahan T.J.,Matrix diffusion rates in fractured volcanic rocks at the Nevada Test Site: Evidence for a dominant influence of effective fracture apertures, Water Resources Research 2007, 43, W07421

  • [35] Reimus P.W., Haga M.J., Adams A.I., Callahan T.J., Turin H.J., Counce D.A., Testing and parameterizing a conceptual solute transport model in saturated fractured tuff using sorbing and nonsorbing tracers in cross-hole tracer tests, J. Contam. Hydrol. 2003a, 62–63, 613–626.

  • [36] Neretnieks I., Diffusion in the rock matrix: an important factor in radionuclide retardation? Journal of Geophysical Research 1980, 85, 4379–4397.

  • [37] Grisak G.E., Pickens J.F., Solute transport through fracturedmedia, 1. The effect of matrix diffusion.Water Resources Research 1980, 16, 719–730.

  • [38] Tang D.H., Frind E.O., Sudicky E.A., Contaminant transportin fractured porous media: analytical solution for a single fracture, Water Resources Research 1981, 17, 555–564.

  • [39] Perrin J., Pochon A., Jeannin P.Y., Zwahlen F., Vulnerability assessment in karstic areas: validation by field experiments, Environmental Geology 2004, 46: 237–245

  • [40] Lauber U., Goldscheider N., Use of artificial and natural tracers to assess groundwater transit-time distribution and flow systems in a high-alpine karst system (WettersteinMountains, Germany), Hydrogeology Journal 2014, 22: 1807–1824

  • [41] Eddebbarh A.A., Zyvoloski G.A., Robinson B.A., Kwicklis E.M., Reimus P.W., Arnold B.W., Corbet T., Kuzio S.P., Faunt C., The saturated zone at Yucca Mountain: an overview of the characterization and assessment of the saturated zone as a barrier to potential radionuclide migration, Journal of Contaminant Hydrology 2003, 62–63, 477–493

  • [42] Glangeaud P., La Chaîne des Puys C. Bull. Serv. Geol. map. France XXII (135), 1913, 256 p (in French)

  • [43] Michel R., Hydrogeologie des formations volcaniques de l’Auvergne

  • [Hydrogeology of the volcanic formations in Auvergne], Bull. Soc. Geol. Fr. 1957, 7, 977–994.

  • [44] Van der Min J., Etude hydrogéologique des grands captages d’eau potable dans les coulées de lave des environs de Clermont-Ferrand

  • [Hydrogeologic study of drinking water catchments in the lava flows of the Clermont-Ferrand area], PhD, Université de Clermont-Ferrand 1945 (in French)

  • [45] Belkessa R., Hydrogéologie de la Chaîne des Puys

  • [Hydrogeology of the Chaîne des Puys], Master thesis, Université de Clermont-Ferrand, France, 1977 (in French)

  • [46] Fournier C., Spontaneous potentials and resistivity surveys applied to hydrogeology in a volcanic area: case history of the Chaîne des Puys (Puy -de-Dôme, France), Geophysical Prospecting 1989, 37, 647–668

  • [47] Bouchet C., Hydrogéologie du milieu volcanique, le bassin de la Veyre, analyse et modélisation du bassin versant du lac d’Aydat, étude d’un aquifèrefissurébasaltique

  • [Volcanic media hydrogeology, the Veyre basin, analysis and modelling of the Aydat lake watershed, study of a fissured basaltic aquifer], PhD, Université d’Avignon et des Pays du Vaucluse, France, 1987 (in French)

  • [48] Belin J.M., Livet M., Heraud H., Autoroute Périgueux Clermont- Ferrand. Dossier d’étude préliminaire de la Chaîne des Puys

  • [Perigueux-Clermont-Ferrand motorway. Preliminary study folder of the Chaîne des Puys]. Ministère de l’équipement et du Logement, CETE Lyon, laboratoire régional de Clermont- Ferrand, 1988 (in French)

  • [49] Gaubi E.B., Etude hydrogéologique de l’extrémité aval du bassin d’Argnat (Chaîne des Puys,Massif Central Français). Projet de l’autoroutePerigueux-Clermont-Ferrand

  • [Hydrogeologic study of the downstream part of the Argnat basin (Chaîne des Puys, French Massif Central). Perigueux-Clermont-Ferrand motorway project], Master thesis in Hydrogeology, Université de Franche-Comté, France, 1990 (In French)

  • [50] Joux M., Structure et fonctionnement hydrogéologique du système aquifère volcanique des eaux minerales de Volvic (Chaîne des Puys, Massif Central Français)

  • [Structure and hydrogeologicfunctiuning of the Volvic mineral waters volcanic aquifer system (Chaîne des Puys, French Massif Central], PhD, Univesité d’Avignon et des Pays du Vaucluse, France, 2002 (In French)

  • [51] Boivin P., Besson J.C., Briot D., Camus G., De Goër D., Herve A., Gourgaud A., Labazuy P., De Larouzière F.D., Livet M., Mergoil J., Miallier D., Morel J.M., Vernet G., Vincent P.M., Volcanologie de la Chaîne des Puys, Massif Central Français

  • [Volcanology of the Chaîne des Puys, French Massif Central], 4me édition, Editions du parc naturel régional des volcans d’Auvergne, 2004

  • [52] Josnin J.Y., Livet M., Besson J.C., Characterizing unsaturated flow from packed scoriated lapilli: Application to Strombolian cone hydrodynamic behaviour, Journal of Hydrology 2007, 335, 225–239

  • [53] Bertrand G., Celle-Jeanton H., Loock S., Huneau F., Lavastre V., Contribution of δ13CCITD and PCO2eq measurements to the understanding of groundwater mineralization and carbon patterns in volcanic aquifers. Application to Argnat Basin (Massif Central), Aquatic Geochemistry 2013, 19(2), 147–171, DOI: 10.1007/s10498-012-9185-0

  • [54] Aubignat A., Le gisement hydrominéral de Volvic en Auvergne

  • [The Volvic hydromineral spring in Auvergne], Revue des sciences naturelles d’Auvergne 1973, 39, 40–68

  • [55] Bertrand G., De la pluie à l’eau souterraine. Apport du traçage naturel (ions majeurs, isotopes) à l’étude du fonctionnement des aquifères volcaniques (Bassin d’Argnat, Chaîne des Puys, France)

  • [Fromrain to groundwater. Contribution of natural tracer tests (major ions, isotopes) for the study of volcanic aquifers (Bassind’Argnat, Chaîne des Puys, France)], PhD thesis, Université Blaise Pascal- Clermont-Ferrand II, France, 2009 (In French) http://tel.archives-ouvertes.fr/index.php? halsid=n0lf5ikv2986kmu11j1e39pr47&view_this_doc=tel- 00556910&version=1 Accessed 19 Feb 2015

  • [56] Fiorillo F., Esposito L., Guadagno F.M., Analyses and forecast of water resources in an ultra-centenarian spring discharge series from Serino (Southern Italy), Journal of Hydrology 2007, 336, 125–138

  • [57] Lorenzo-Lacruz J., Vicente-Serrano S.M., López-Moreno J.I., Morán-Tejeda E., Zabalza J., Recent trends in Iberian stream flows (1945–2005), Journal of Hydrology 2012, 414–415, 463– 475

  • [58] Molinari J., Peaudecerf P., Essais conjoints au laboratoire et sur le terrain en vue d’une approche simplifiée de la prévision des propagations de substances nuisibles dans les aquifères réels

  • [Combined laboratory and field test to design a simplified approach of chemical propagation forecast within real aquifers], Symposium on Hydrodynamic diffusion and dispersion in porous media, Pavie, Avril 1977, A.I.R.H. Comité milieux poreux, 1977, 89–102

  • [59] Chambers Meigs L., Bahr J.M., Tracer test evaluation of groundwater - surface water interactions. Proceedings of the Yokohama Symposium Tracers in Hydrology, IAHS Publ. 1993, 215, 235–240

  • [60] Bowman R.S., Evaluation of Some New Tracers for Soil Water Studies. Soil Sci. Soc. Am. J. 1984, 48(5), 987–993

  • [61] Bradbury M.H., Green A., Measurement of important parameters determining aqueous diffusion rates through crystalline rock matrices, Journal of Hydrology 1985, 82, 39–55

  • [62] HACH, Electrochemical products for analysis, available via http://www.meditecna.com/pdfs/ sensionfamilyofelectrochemcatalog.pdf Accessed 07 Oct 2014

  • [63] Bear J., Dynamics of fluids in porous media, American Elsevier Publishing Comp. Ed., New York-London-Amsterdam, 1972

  • [64] Kreft A., Zuber A., On the physical meaning of the dispersion equation and its solution for different initial boundary conditions, Chem. Eng. Sci. 1978, 33, 1471–1480

  • [65] Maloszewski P., Benischke R., Harum T., Zojer H., Estimation of solute transport parameters in heterogeneous groundwater systems of a karstic aquifer using artificial tracer experiments, Water Down Under, 1994, 94, 105–111

  • [66] Witthüser K., Reichert B., Hötzl. Contaminant transport in fractured chalk: Laboratory and field experiments, Ground Water, 2003, 41(6), 806–815

  • [67] Novakowski K.S., Evans G.V., Lever D.A., Raven K.G., A field example of measuring hydrodynamic dispersion in a single fracture, Water Resource Research 1985, 21(8), 1165–1174

  • [68] Banton O., Bangoy L.M., Hydrogéologie, Multiscience environnementale des eaux souterraines

  • [Hydrogeology, environmental multiscience of groundwaters], 1997, Presses de l’Université du Quebec, 460 p (In French)

  • [69] Newman J., Electrochemical Systems, 1973, Prentice-Hall, Englewood Cliffs, New Jersey

  • [70] Himmelsbach T., Hötzl H.,Maloszewski P., Solute transport process in a highly permeable fault zone of Lindau fractured rock test site (Germany), Groundwater, 1998, 36(5), 792–800

  • [71] Cruz J.V., Ensaio sobre a Agua subterrânea nos Açores. Historia, ocorrencia e qualidade. Secretaria Regional do Ambiente

  • [Insights about groundwater in Azores. History, occurence and quality]. Direcçao Regional do Ordenamento do Territorio e dos Recursos Hidricos (Ed.), 2004, 288 p (in Portuguese)

  • [72] Chandrashekhar H., Chandrashekharmain S.S., Ganachari S.N., Groundwater fluctuations and calculation of effective porosity of laterite and effective fissure porosity of basalt of the Karanja basin, India. Jour. Geol. Soc. India, 1976, 17, 117–122

  • [73] Deolankar S.B., The Deccan basalts ofMaharashtra, India. Their potential as aquifers, Groundwater, 1980, 18(5), 434–437

  • [74] Nemcock M., Moore J.N., Allis R., McCulloch J., Fracture Development within a Stratovolcano: the Karaha-TelagaBodas Geothermal Field, Java Volcanic Arc, Geological Society, London, Special Publications, 2004, 231, 223–242

  • [75] Einsiedl F., 2005 Flow system dynamics and water storage of a fissured-porous karst aquifer characterized by artificial and environmental tracers, Journal of Hydrology 2005, 312, 312–321

  • [76] Bakalowicz M., Karst groundwater: a challenge for new resources, Hydrogeology Journal 2005, 13, 148–160

  • [77] Goldscheider N., Drew D., Worthington S., 2007. Introduction. In Goldscheider N., Drew, D. (Ed.), Methods in Karst Hydrogeology. Taylor & Francis, London, 2007, 1–8.

  • [78] Green T.R., Taniguchi M., Kooi H., Gurdak J.J., Allen D.M., Hiscock K.M., Treidel H., Aureli A., Beneath the surface: impacts of climate change on groundwater, Journal of Hydrology 2011, 405, 532–560

  • [79] Kløve B., Bertachi C., Bertrand G., Gurdak J., Kupfersberger H., Kvoerner J., Muotka T., Preda E., Pulido-Velazquez M., Wachniew P., Climate change impacts on groundwater and dependent ecosystems. Special issue “Climatic change impact on water: overcoming data and science gaps”. Journal of Hydrology 2014, 518 (Part B), 250–266, DOI: http://dx.doi.org/10.1016/j.jhydrol. 2013.06.037

  • [80] Legout C., Molenat J., Aquilina L., Gascuel-Odoux C., Faucheux M., Fauvel Y., Bariac, T., Solute transfer in the unsaturated zonegroundwater continuum of a headwater catchment, Journal of Hydrology 2007, 332, 427–441

  • [81] Haria H., Shand P., Evidence for deep sub-surface flow routing in forested upland Wales: implications for contaminant transport and stream flow generation, Hydrology and Earth System Sciences 2004, 8 (3), 334–344.

  • [82] Birkholzer J.T., Rubin H., Daniels H., Rouvé G., Contaminant advection and spreading in a fractured permeable formation: Part 1. Parametric Evaluation and Analytical Solution, Journal of Hydrology, 1993, 144(1–4), 1–33.

OPEN ACCESS

Journal + Issues

Search