Algorithms in A-algebras

  • 1 Department of Mathematics, CUNY College of Staten Island, New York, USA
Mikael Vejdemo-JohanssonORCID iD: http://orcid.org/0000-0001-6322-7542

Abstract

Based on Kadeishvili’s original theorem inducing A-algebra structures on the homology of dg-algebras, several directions of algorithmic research in A-algebras have been pursued. In this paper, we survey the work done on calculating explicit A-algebra structures from homotopy retractions, in group cohomology and in persistent homology.

  • [1]

    F. Belchí, Optimising the topological information of the A {A_{\infty}}-persistence groups, preprint (2017), https://arxiv.org/abs/1706.06019.

  • [2]

    F. Belchí and A. Murillo, A {A_{\infty}}-persistence, Appl. Algebra Engrg. Comm. Comput. 26 (2015), no. 1–2, 121–139.

  • [3]

    A. Berciano, Cálculo simbólico y técnicas de control de A-infinito estructuras Ph.D. thesis, Universidad de Sevilla, 2006.

  • [4]

    A. Berciano, H. Molina-Abril and P. Real, Searching high order invariants in computer imagery, Appl. Algebra Engrg. Comm. Comput. 23 (2012), no. 1–2, 17–28.

    • Crossref
    • Export Citation
  • [5]

    A. Berciano and P. Real, A {A_{\infty}}-coalgebra structure on the p {\mathbb{Z}_{p}}-homology of Eilenberg–Mac Lane spaces, Proceedings EACA (2004), http://www.ehu.eus/aba/articles/ainhoa-eaca04.pdf.

  • [6]

    A. Berciano and P. Real, A {A_{\infty}}-coalgebra structure maps that vanish on H * ( K ( π , n ) ; p ) {H_{*}(K(\pi,n);\mathbb{Z}_{p})}, Forum Math. 22 (2010), no. 2, 357–378.

  • [7]

    A. Berciano and R. Umble, Some naturally occurring examples of A {A_{\infty}}-bialgebras, J. Pure Appl. Algebra 215 (2011), no. 6, 1284–1291.

    • Crossref
    • Export Citation
  • [8]

    A. Berciano-Alcaraz, A computational approach of A {A_{\infty}}-(co)algebras, Int. J. Comput. Math. 87 (2010), no. 4, 935–953.

    • Crossref
    • Export Citation
  • [9]

    W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.

    • Crossref
    • Export Citation
  • [10]

    R. Brown, The twisted Eilenberg–Zilber theorem, Simposio di Topologia (Messina 1964), Edizioni Oderisi, Gubbio (1965), 33–37.

  • [11]

    G. Carlsson, Topology and data, Bull. Amer. Math. Soc. (N.S.) 46 (2009), no. 2, 255–308.

    • Crossref
    • Export Citation
  • [12]

    F. Chazal, V. De Silva, M. Glisse and S. Oudot, The Structure and Stability of Persistence Modules, Springer Briefs Math., Springer, Cham, 2016.

  • [13]

    D. Cohen-Steiner, H. Edelsbrunner and J. Harer, Stability of persistence diagrams, Discrete Comput. Geom. 37 (2007), no. 1, 103–120.

    • Crossref
    • Export Citation
  • [14]

    R. Ghrist, Barcodes: The persistent topology of data, Bull. Amer. Math. Soc. (N.S.) 45 (2008), no. 1, 61–75.

  • [15]

    V. K. A. M. Gugenheim, L. A. Lambe and J. D. Stasheff, Perturbation theory in differential homological algebra. II, Illinois J. Math. 35 (1991), no. 3, 357–373.

    • Crossref
    • Export Citation
  • [16]

    E. Herscovich, A higher homotopic extension of persistent (co) homology, preprint (2014), https://arxiv.org/abs/1412.1871.

  • [17]

    T. V. Kadeishvili, On the theory of homology of fiber spaces (in Russian), Uspekhi Mat. Nauk 35 (1980), no. 3(213), 183–188; translation in Russian Math. Surveys 35 (1980), no. 3, 231–238.

  • [18]

    B. Keller, Introduction to A-infinity algebras and modules, Homology Homotopy Appl. 3 (2001), no. 1, 1–35.

    • Crossref
    • Export Citation
  • [19]

    B. Keller, A-infinity algebras in representation theory, Representations of Algebra. Vol. I, II, Beijing Normal University Press, Beijing (2002), 74–86.

  • [20]

    D.-M. Lu, J. H. Palmieri, Q.-S. Wu and J. J. Zhang, A {A_{\infty}}-algebras for ring theorists, Algebra Colloq. 11 (2004), no. 1, 91–128.

  • [21]

    D.-M. Lu, J. H. Palmieri, Q.-S. Wu and J. J. Zhang, A-infinity structure on Ext-algebras, preprint (2006), https://arxiv.org/abs/math/0606144.

  • [22]

    D. Madsen, Homological aspects in representation theory, Ph.D. thesis, Norges Teknisk-Naturvitenskapelige Universitet, 2002.

  • [23]

    S. A. Merkulov, Strong homotopy algebras of a Kähler manifold, Int. Math. Res. Not. IMRN 1999 (1999), no. 3, 153–164.

    • Crossref
    • Export Citation
  • [24]

    S. Saneblidze and R. Umble, Diagonals on the permutahedra, multiplihedra and associahedra, Homology Homotopy Appl. 6 (2004), no. 1, 363–411.

    • Crossref
    • Export Citation
  • [25]

    S. Schmid, An A {\mathrm{A}_{\infty}}-structure on the cohomology ring of the symmetric group S p {\mathrm{S}_{p}} with coefficients in 𝔽 p {\mathbb{F}_{p}}, Algebr. Represent. Theory 17 (2014), no. 5, 1553–1585.

    • Crossref
    • Export Citation
  • [26]

    J. D. Stasheff, Homotopy associativity of H-spaces. I, Trans. Amer. Math. Soc. 108 (1963), 275–292.

  • [27]

    J. D. Stasheff, Homotopy associativity of H-spaces. II, Trans. Amer. Math. Soc. 108 (1963), 293–312.

  • [28]

    M. Vejdemo-Johansson, Enumerating the Saneblidze–Umble diagonal terms, preprint (2007), https://arxiv.org/abs/0707.4399.

  • [29]

    M. Vejdemo-Johansson, Computation of A-infinity algebras in group cohomology, Ph.D. thesis, Friedrich-Schiller-Universität Jena, 2008.

  • [30]

    M. Vejdemo-Johansson, A partial A {A_{\infty}}-structure on the cohomology of C n × C m {C_{n}\times C_{m}}, J. Homotopy Relat. Struct. 3 (2008), no. 1, 1–11.

  • [31]

    M. Vejdemo-Johansson, Blackbox computation of A {A_{\infty}}-algebras, Georgian Math. J. 17 (2010), no. 2, 391–404.

  • [32]

    M. Vejdemo-Johansson, Sketches of a platypus: A survey of persistent homology and its algebraic foundations, Algebraic Topology: Applications and new Directions, Contemp. Math. 620, American Mathematical Society, Providence (2014), 295–319.

  • [33]

    The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.8.8, 2017.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter.

The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.

Search