Characterization of Non-Target-Site Mechanisms in Imidazolinone-Resistant Sunflower by RNA-seq

Mercedes Gilhttp://orcid.org/0000-0002-0855-2323 1 , Tatiana Vega 1 , Silvina Felitti 1 , Liliana Picardi 2 , Sandrine Balzergue 3 , 4 , and Graciela Nestares 2
  • 1 IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina
  • 2 IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina; CIUNR – Consejo de Investigaciones de la Universidad Nacional de Rosario, Zavalla, Argentina
  • 3 POPS Transcriptomic Platform – Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Rue de Noetzlin, 91405, Orsay, France
  • 4 IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
Mercedes GilORCID iD: http://orcid.org/0000-0002-0855-2323
  • Corresponding author
  • IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina
  • orcid.org/0000-0002-0855-2323
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Tatiana Vega
  • IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Silvina Felitti
  • IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Liliana Picardi
  • IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina; CIUNR – Consejo de Investigaciones de la Universidad Nacional de Rosario, Zavalla, Argentina
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Sandrine Balzergue
  • POPS Transcriptomic Platform – Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Univ Paris-Diderot, Sorbonne Paris-Cite, Universite Paris-Saclay, Rue de Noetzlin, 91405, Orsay, France
  • IRHS, INRA, AGROCAMPUS-Ouest, Université d’Angers, SFR 4207 QUASAV, 42 rue Georges Morel, 49071, Beaucouzé cedex, France
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Graciela Nestares
  • IICAR, UNR, CONICET (Instituto de Investigaciones en Ciencias Agrarias de Rosario, Universidad Nacional de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas), Facultad de Ciencias Agrarias, Campo Experimental ‘J. F. Villarino’, CC 14, S2125ZAA, Zavalla, Argentina; CIUNR – Consejo de Investigaciones de la Universidad Nacional de Rosario, Zavalla, Argentina
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Imisun sunflowers (Helianthus annuus L.) are imidazolinone-resistant cultivars in which the two mechanisms of herbicide resistance coexist: (i) mutation in herbicide target-site (target-site resistance) and (ii) non-target-site resistance (NTSR). In Imisun technology, NTSR could be related to herbicide metabolism and might occur as a result of a constitutive up-regulation of resistance genes, or it can appear only after herbicide treatment. The objective of this study was to characterize NTSR in Imisun sunflower in response to imazethapyr using RNA-Seq and to determine whether these mechanisms are constitutive or herbicide-induced. Cypsels were germinated in plastic pots, watered by capillarity and growth in chamber under controlled conditions. Seven-day-old plants were treated with 0 (control) and 1 μM imazethapyr for 12 h. After leaf RNA purification, stranded, paired-end cDNA libraries were constructed. Sequencing was performed with Illumina HiSeq2000. Local mapping, with and without multihits, was carried out over the reference transcriptome HaT13l and differential expression was analysed. Sixty one and 47 contigs (according to mapping strategy) related to xenobiotic metabolism were found: cytochromes P450s, ABC transporters, glycosyltransferases, UDPglucuronosyl/glucosyltransferases and glutathione S-transferases. None of these contigs showed differential expression between control and imazethapyr-treated plants. Seventeen interesting contigs were verified by qRT-PCR. These results suggest that constitutive NTSR mechanisms may account for imidazolinone resistance in Imisun sunflower.

    • Supplementary Material Details
  • Al-Khatib, K., Baumgartner, J.R., Peterson, D.E., Currie, R.S., 1998. Imazethapyr resistance in common sunflower (Helianthus annuus). Weed Sciences 46: 403–407.

    • Crossref
    • Export Citation
  • Badouin, H., Gouzy, J., Grassa, C., Murat, F., Staton, S., Cottret, L., Lelandais-Brière, C., Owens, G., Carrère, S., Mayjonade, B., Legrand, L., Gill, N., Kane, N., Bowers, J., Hubner, S., Bellec, A., Bérard, A., Bergès, H., Blanchet, N., Boniface, M., Brunel, D., Catrice, O., Chaidir, N., Claudel, C., Donnadieu, C., Faraut, T., Fievet, G., Helmstetter, N., King, M., Knapp, S., Lai, Z., Pegot-Espagnet, P., Pouilly, N., Raftis, F., Sallet, E., Schiex, T., Thomas, J., Vandecasteele, C., Varès, D., Vear, F., Vautrin, S., Crespi, M., Mangin, B., Burke, J., Salse, J., Muños, S., Vincourt, P., Rieseberg, L., Langlade, N., 2017. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546: 148–152.

    • Crossref
    • PubMed
    • Export Citation
  • Balabanova, D., Remans, T., Vassilev, A., Cuypers, A., Vangronsveld, J., 2018. Possible involvement of glutathione S-transferases in imazamox detoxification in an imidazolinone-resistant sunflower hybrid. Journal of Plant Physiology 221: 62–65.

    • Crossref
    • Export Citation
  • Breccia, G., Gil, M., Vega, T., Altieri, E., Bulos, M., Picardi, L., Nestares, G., 2017. Contribution of non-target-site resistance in imidazolinone-resistant Imisun sunflower. Bragantia 76: 536–542.

    • Crossref
    • Export Citation
  • Bruniard, J.M., Miller, J.F., 2001. Inheritance of imidazolinone-herbicide resistance in sunflower. Helia 24: 11–16.

  • Busi, R., Vila-Aiub, M.M., Powles, S.B., 2010. Genetic control of a cytochrome P450 metabolism-based herbicide resistance mechanism in Lolium rigidum. Heredity 106: 817–824.

    • PubMed
    • Export Citation
  • Délye, C., 2012. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Management Science 69: 176–187.

  • Délye, C., Jasieniuk, M., Le Corre, V., 2013. Deciphering the evolution of herbicide resistance in weeds. Trends in Genetics 29: 649–658.

    • Crossref
    • Export Citation
  • Didierjean, L., Gondet, L., Perkins, R., Lau, S.C., Schaller, H., O’Keefe, D.P., Werck-Reichhart, D., 2002. Engineering herbicide metabolism in tobacco and arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiology 130: 179–189.

    • Crossref
    • PubMed
    • Export Citation
  • Duhoux, A., Carrère, S., Gouzy, J., Bonin, L., Délye, C., 2015. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. Plant Molecular Biology 87: 473–487.

    • Crossref
    • Export Citation
  • Duhoux, A., Délye, C., 2013. Reference genes to study herbicide stress response in Lolium sp.: Up-regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS One 8: e63576. doi:.

    • Crossref
    • PubMed
    • Export Citation
  • Gil, M., Ochogavía, A.C., Vega, T., Felitti, S.A., Nestares, G., 2018. Transcript profiling of nontarget-site imidazolinone resistance in Imisun sunflower. Crop Science 58: 1991–2001. doi:

    • Crossref
    • Export Citation
  • Hellemans, J., Mortier, G., De Paepe, A., Speleman, F., Vandesompele, J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology 8: R19. doi:.

    • Crossref
    • PubMed
    • Export Citation
  • Kaspar, M., Grondona, M., Leon, A., Zambelli, A., 2011. Selection of a sunflower line with multiple herbicide tolerance that is reversed by the P450 inhibitor malathion. Weed Sciences 59: 232–237.

    • Crossref
    • Export Citation
  • Kolkman, J.M., Slabaugh, M.B., Bruniard, J.M., Berry, S., Bushman, B.S., Olungu, C., Maes, N., Abratti, G., Zambelli, A., Miller, J.F., Leon, A., Knapp, S.J., 2004. Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theoretical and Applied Genetics 109: 1147–1159.

    • Crossref
    • Export Citation
  • Li, P., Piao, Y., Shon, H.S., Ryu, K.H., 2015. Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics 16: 347. doi:.

    • Crossref
    • PubMed
    • Export Citation
  • Malik, V.S., 2016. RNA sequencing as a tool for understanding biological complexity of abiotic stress in plants. Journal of Plant Biochemistry and Biotechnology 25: 1–2.

    • Crossref
    • Export Citation
  • Miller, J.F., Al-Khatib, K., 2002. Registration of imidazolinone herbicide-resistant sunflower maintainer (HA 425) and fertility restorer (RHA 426 and RHA 427) germplasms. Crop Science 42: 988–989.

    • Crossref
    • Export Citation
  • Murashige, T., Skoog, F., 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497.

    • Crossref
    • Export Citation
  • Petit, C., Duhieu, B., Boucansaud, K., Délye, C., 2010. Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Science 178: 501–509.

    • Crossref
    • Export Citation
  • R Development Core Team, 2010. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.

  • R4P Network, 2016. Trends and challenges in pesticide resistance detection. Trends in Plant Science 21: 834–853.

    • PubMed
    • Export Citation
  • Rozen, S., Skaletsky, H.J., 2000. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz, S., Misener, S. (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology, Humana Press, Totowa, NJ, pp. 365–386.

  • Sala, C.A., Bulos, M., Altieri, E., Ramos, M.L., 2012. Genetics and breeding of herbicide tolerance in sunflower. Helia 35: 57–70.

    • Crossref
    • Export Citation
  • Storey, J.D., Tibshirani, R., 2003. Statistical significance for genome wide studies. Proceedings of the National Academy of Sciences of the United States of America 100: 9440–9445. doi:.

    • Crossref
    • Export Citation
  • Tan, S., Evans, R.R., Dahmer, M.L., Singh, B.K., Shaner, D.L., 2005. Imidazolinone- tolerant crops: History, current status and future. Pest Management Science 61: 246–257.

    • Crossref
    • PubMed
    • Export Citation
  • Yuan, J.S., Tranel, P.J., Stewart, C.N., 2007. Non-target-site herbicide resistance: A family business. Trends in Plant Science 12: 6–13.

    • Crossref
    • PubMed
    • Export Citation
  • Zhang, L., Lu, Q., Chen, H., Pan, G., Xiao, S., Dai, Y., Li, Q., Zhang, J., Wu, X., Wu, J., Tu, J., Liu, K., 2007. Identification of a cytochrome P450 hydroxylase, CYP81A6, as the candidate for the bentazon and sulfonylurea herbicide resistance gene, Bel, in rice. Molecular Breeding 19: 59–68.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search