A study of thermo-hydro-treated (THT) birch wood by chemical analysis and Py-GC/MS

Ingeborga Andersone
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Galina Dobele
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Bruno Andersons
  • Corresponding author
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Nina Kurnosova
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Edgars Kuka
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Aleksandrs Volperts
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Juris Grinins
  • Latvian State Institute of Wood Chemistry, 27 Dzerbenes str., LV-1006 Riga, Latvia
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The chemical changes in birch wood occurring at thermo-hydro treatment (THT) was studied at temperatures (T) of 150, 160 and 170°C by analytical pyrolysis [Py-gas chromatography/mass spectrometry/flame ionisation detector (GC/MS/FID)], elemental analysis and traditional wet-chemical analysis. THT wood (THTW) was also extracted with acetone. Mass losses (ML) due to THT and acetone extraction of THTW were considered for material balance calculations. The holocellulose and hemicellulose (HC) contents decrease with increasing THT temperature (THTT), thus the apparent lignin content is elevated by ca. 20%. The HC degradation begins at 150°C, while that of α-cellulose modification at 170°C. Compared to unmodified birch, the THT170°C material contains ca. 10% less α-cellulose and up to 40% less HC. The Py-GC/MS also indicates decreasing amounts of volatile products from polymeric carbohydrates (CHs) and lignin origin as a function of increasing THTT. The identified CH-based Py products of THT170°C of non-extracted (ne) and extracted (e) materials resulted in 13 and 22% weight decrements, respectively, while the lignin-type Py products were reduced by 13 and 49%, respectively. With increasing THTT, the total content of CO2, water and methanol decreases, and the amount of unidentified compounds increases by 30%.

    • Supplementary material
  • Altgen, M., Hofmann, T., Militz, H. (2016a) Wood moisture content during the thermal modification process affects the improvement in hygroscopicity of Scots pine sapwood. Wood Sci. Technol. 50:1181–1195.

  • Altgen, M., Willems, W., Militz, H. (2016b) Wood degradation affected by process conditions during thermal modification of European beech in a high-pressure reactor system. Eur. J. Wood Wood Prod. 74:653–662.

  • Alves, A., Gierlinger, N., Schwanninger, M., Rodrigues, J. (2008) Analytical pyrolysis as a direct method to determine the lignin content in wood: part 2: evaluation of the common model and the influence of compression wood. J. Anal. Appl. Pyrol. 81:167–172.

  • Andersson, S., Serima, R., Väänänen, T., Paakkari, T., Jämsä, S., Viitaniemi, P. (2005) X-ray scattering studies of thermally modified Scots pine (Pinus sylvestris). Holzforschung 59:422–427.

  • Backa, S., Brolin, A., Nilsson, T. (2001) Characterisation of fungal degraded birch wood by FTIR and Py-GC. Holzforschung 55:225–232.

  • Boonstra, M., van Acker, J., Kegel, E., Stevens, M. (2007) Optimisation of a two-stage heat treatment process: durability aspects. Wood Sci. Technol. 41:31–57.

  • Browning, B.L. Methods in Wood Chemistry. Wiley, New York, 1967.

  • Burmester, A. (1973) Einfluß einer Wärme-Druck Behandlung halbtrockenen Holzes auf seine Formbeständigkeit. Holz Roh- und Werkstoff 31:237–243.

  • Curling, S., Clausen, C.A., Winandy, J.E. (2001) The effect of hemicelluloses degradation on the mechanical properties of wood during brown rot decay. The International Research Group on Wood Protection, Doc. No. IRG/WP 01-20219, Stockholm, Sweden.

  • Dizhbite, T., Telysheva, G., Dobele, G., Arshanitsa, A., Bikovens, O., Andersone, A., Kampars, V. (2001) Py-GC/MS for characterization of non-hydrolyzed residues from bioethanol production from softwood. J. Anal. Appl. Pyrol. 90:126–132.

  • Esteves, B., Graça, J., Pereira, H. (2008) Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung 62:344–351.

  • Faix, O., Meier, D., Fortmann, I. (1990) Thermal degradation products of wood. Gas chromatographic separation and mass spectrometric characterization of monomeric lignin derived products. Holz Roh- Werkstoff 48:281–285.

  • Faix, O., Bremer, J., Schmidt, O., Stevanovic, T. (1991) Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spcectroscopy. J. Anal. Appl. Pyrol. 21:147–162.

  • Fengel, D. (1966) Über die Veränderungen des Holzes un seiners Komponenten im Temperaturbereich bis 200°C. Erste Mitteilung: Heiß- und Kaltwasser extrakte von thermisch behandeltem Fichtenholz. Holz Roh- Werkstoff 24:9–14.

  • Fengel, D., Przyklenk, M. (1970) Einfluß einer Wärmebehandlung auf das Lignin in Fichtenholz. Holz Roh- Werkstoff 28: 254–263.

  • Fengel, D., Wegener, G. Wood (Chemistry, Ultrastructure, Reactions). Walter de Gruyter, Berlin, New York, 1984.

  • Funaoka, M., Kako, T., Abe, I. (1990) Condensation of lignin during heating of wood. Wood Sci. Technol. 24:277–288.

  • Garrote, G., Dominguez, H., Parajó, J.C. (2001) Study on the deacetylation of hemicelluloses during the hydrothermal processing of Eucalyptus wood. Holz Roh- Werkstoff 59:53–59.

  • Gerardin, Ph. (2016) New alternatives for wood preservation based on thermal and chemical modification on wood – a review. Ann. Forest Sci. 73:559–570.

  • González-Peña, M.M., Curling, S.F., Hale, M.D.C. (2009) On the effect of heat on the chemical composition and dimensions of thermally-modified wood. Polymer Degrad. Stability 4:2184–2193.

  • Grinins, J., Andersons, B., Biziks, V., Andersone, I., Dobele, G. (2013) Analytical pyrolysis as an instrument to study the chemical transformations of hydrothermally modified wood. J. Anal. Appl. Pyrol. 103:36–41.

  • Grinins, J., Andersons, B., Irbe, I., Andersone, I., Meija-Feldmane, A., Janberga, A., Pavlovics, G., Sansonetti, E. (2016a) Thermo-hydro treated (THT) birch veneers for producing plywood with improved properties. Holzforschung, 70:739–746.

  • Grinins, J., Irbe, I., Andersons, B., Andersone, I., Meija-Feldmane, A., Janberga, A., Pavlovics, G., Sansonetti, E. (2016b) Thermo-hydro treated (THT) birch plywood with improved service properties. Int. Wood Prod. J. 7:181–187.

  • Heigenmoser, A., Liebner, F., Windeisen, E., Richter, K. (2013) Investigation of thermally treated beech (Fagus sylvatica) and spruce (Picea abies) by means of multifunctional analytical pyrolysis-GC/MS. J. Anal. Appl. Pyrol. 100:117–126.

  • Ibbett, R., Gaddipati, S., Davies, S., Hill, S., Tucker, G. (2011) The mechanisms of hydrothermal deconstruction of lignocellulose: new insights from thermal-analytical and complementary studies. Bioresource Technol. 102:9272–9278.

  • Kamdem, P.D., Pizzi, A., Jermannaud, A. (2002) Durability of heat-treated wood. Holz Roh- Werkstoff 60:1–6.

  • Kollmann, F., Fengel, D. (1965) Änderungen der chemischen Zusammensetzung von Holz durch thermische Behandlung. Holz Roh- Werkstoff 23:461–468.

  • Košikova, B., Hricovini, M., Cosentino, C. (2010) Interaction of lignin and polysaccharides in beech wood (Fagus sylvatica) during drying processes. Wood Sci. Technol. 33:373–380.

  • Li, J., Henriksson, G., Gellerstedt, G. (2007) Lignin depolymerization/ repolymerization and its critical role for delignification of aspen wood by steam explosion. Bioresource Technol. 98:3061–3068.

  • Meier, D., Fortmann, I., Odermatt, J., Faix, O. (2005) Discrimination of genetically modified poplar clones by analytical pyrolysis-gas chromatography and principal component analysis. J. Anal. Appl. Pyrol. 74:129–137.

  • Niemz, P., Hofmann, T., Retfalvi, T. (2010) Investigation of chemical changes in the structure of thermally modified wood. Maderas Ciencia y Technologia 12:69–78.

  • Nuopponen, M., Vuorinen, T., Jämsä, S., Viitaniemi, P. (2005) Thermal modification of softwood studied by FT-IR and UV resonance Raman spectroscopy. J. Wood Chem. Technol. 24:13–26.

  • Pfriem, A. (2006) Untersuchungen zum Materialverhalten thermisch modifizierter Hölzer für deren Verwendung im Musikinstrumenten. Ph.D. Dissertation. TU Dresden, Germany, 2006.

  • Rodrigues, J., Meier, D., Faix, O., Pereira, H. (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucaliptus globulus wood lignin by analytical pyrolysis. J. Anal. Appl. Pyrol. 48:121–128.

  • Rowell, R.M., Ibach, R.E., McSweeny, J., Nilsson, T. (2009) Understanding decay resistance, dimensional stability and strength changes in heat-treated and acetylated wood. Wood Mat Sci. Eng. 4:14–22.

  • Salmen, L., Burgert, I. (2009) Cell wall features with regard to mechanical performance. A review. Holzforschung 63:121–129.

  • Sandermann, W., Augustin, H. (1963) Chemische Untersuchungen über die thermische Zersetzung von Holz. Erste Mitteilung – Stand der Forschung. Holz Roh- Werkstoff 21:256–265.

  • Sandermann, W., Augustin, H. (1964) Chemische Untersuchungen über die thermische Zersetzung von Holz. Dritte Mitteilung – Chemische Untersuchung des Zersetzungsablaufes. Holz Roh- Werkstoff 22:377–386.

  • Stamm, A.J. (1956) Thermal degradation of wood and cellulose. Ind. Eng. Chem. 48:413–417.

  • Syverud, K., Leirset, I., Vaaler, D. (2003) Characterization of carbohydrates in chemical pulps by pyrolysis gas chromatography/mass spectrometry. J. Anal. Appl. Pyrol. 67:381–391.

  • TAPPI T222 om-06 (2011) Acid-insoluble lignin in wood and pulp.

  • Tjeerdsma, B.F., Militz, H. (2005) Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat-treated wood. Holz Roh- Werkstoff 63:102–111.

  • Tjeerdsma, B.F., Boonstra, M., Pizzi, A., Tekely, P., Militz, H. (1998) Characterisation of thermally modified wood: molecular reasons for wood performance improvement. Holz Roh- Werkstoff 56:149–153.

  • Tsuge, S. (1995) Analytical pyrolysis – past, present and future. J. Anal. Appl. Pyrol. 32:1–6.

  • Weiland, J.J., Guyonnet, R. (2003) Study of chemical modification and fungi degradation of thermally modified wood using DRIFT spectroscopy. Holz Roh- Werkstoff 61:216–220.

  • Welzbacher, C.R., Brischke, C., Rapp, A.O. (2007) Influence of treatment temperature and duration on selected biological, mechanical, physical and optical properties of thermally modified timber. Wood Mater. Sci. Eng. 2:66–76.

  • Wikberg, H. Advanced Solid State NMR Spectroscopic Techniques in the Study of Thermally Modified Wood. Doctoral thesis. University of Helsinki, Finland, 2004.

  • Wikberg, H., Maunu, S.L. (2004) Characterisation of thermally modified hard and softwoods by 13C CPMAS NMR. Carbohyd. Polym. 58:461–466.

  • Willems, W., Gerardin, P., Militz, H. (2013) The average carbon oxidation state of thermally modified wood as a marker for its decay resistance against Basidiomycetes. Polymer Degrad. Stability 98:2140–2145.

  • Winandy, J.E., Lebow, P.K. (2001) Modelling strength loss in wood by chemical composition. Part I. An individual component model for southern pine. Wood Fiber Sci. 33:291–234.

  • Windeisen, E., Wegener, G. (2008) Behaviour of lignin during thermal treatments of wood. Ind. Crops Prod. 27:157–162.

  • Windeisen, E., Strobel, C., Wegener, G. (2007) Chemical changes during the production of thermo-treated beech wood. Wood Sci. Technol. 41:523–536.

  • Windeisen, E., Bächle, H., Zimmer, B., Wegener, G. (2009) Relations between chemical changes and mechanical properties of thermally treated wood. Holzforschung 63:773–778.

  • Zakis, G.F. Functional Analysis of Lignins and their Derivatives. TAPPI Press, Atlanta, 1994.

  • Zaman, A., Alen, R., Kolilainen, R. (2000) Thermal behaviour of Scots pine (Pinus sylvestris) and silver birch (Betula pendula) at 220–230°C. Wood Fiber Sci. 32:138–143.

Purchase article
Get instant unlimited access to the article.
$42.00
Price including VAT
Log in
Already have access? Please log in.


Journal + Issues

Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research.

Search