Beyond obesity – thermogenic adipocytes and cardiometabolic health

Peter Aldiss 1 , Neele Dellschaft 1 , Harold Sacks 2 , Helen Budge 1 ,  and Michael E. Symonds 3
  • 1 The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and School of Medicine, University Hospital, University of Nottingham, Nottingham, UK
  • 2 Endocrinology and Diabetes Division, VA Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, CA, USA
  • 3 The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK
Peter Aldiss
  • The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and School of Medicine, University Hospital, University of Nottingham, Nottingham, UK
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Neele Dellschaft
  • The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and School of Medicine, University Hospital, University of Nottingham, Nottingham, UK
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Harold Sacks
  • Endocrinology and Diabetes Division, VA Greater Los Angeles Healthcare System, Department of Medicine, University of California, Los Angeles, CA, USA
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Helen Budge
  • The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and School of Medicine, University Hospital, University of Nottingham, Nottingham, UK
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Michael E. Symonds
  • Corresponding author
  • The Early Life Research Unit, Division of Child Health, Obstetrics and Gynaecology, and Nottingham Digestive Disease Centre and Biomedical Research Unit, School of Medicine, University Hospital, University of Nottingham, Nottingham, UK
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The global prevalence of obesity and related cardiometabolic disease continues to increase through the 21st century. Whilst multi-factorial, obesity is ultimately caused by chronic caloric excess. However, despite numerous interventions focussing on reducing caloric intake these either fail or only elicit short-term changes in body mass. There is now a focus on increasing energy expenditure instead which has stemmed from the recent ‘re-discovery’ of cold-activated brown adipose tissue (BAT) in adult humans and inducible ‘beige’ adipocytes. Through the unique mitochondrial uncoupling protein 1 (UCP1), these thermogenic adipocytes are capable of combusting large amounts of chemical energy as heat and in animal models can prevent obesity and cardiometabolic disease. At present, human data does not point to a role for thermogenic adipocytes in regulating body weight or fat mass but points to a pivotal role in regulating metabolic health by improving insulin resistance as well as glucose and lipid homeostasis. This review will therefore focus on the metabolic benefits of BAT activation and the mechanisms and signalling pathways by which these could occur including improvements in insulin signalling in peripheral tissues, systemic lipid and cholesterol metabolism and cardiac and vascular function.

  • [1]

    Cinti S. The adipose organ at a glance. Dis Model Mech. 2012;5:588–94.

    • Crossref
    • Export Citation
  • [2]

    Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta. 2014;1842:340–51.

    • Crossref
    • PubMed
    • Export Citation
  • [3]

    de Jong JM, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab. 2015;308:E1085–105.

    • Crossref
    • PubMed
    • Export Citation
  • [4]

    Grant RW, Dixit VD. Adipose tissue as an immunological organ. Obesity (Silver Spring). 2015;23:512–8.

    • Crossref
    • PubMed
    • Export Citation
  • [5]

    Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab. 2004;89:2548–56.

    • Crossref
    • PubMed
    • Export Citation
  • [6]

    Symonds ME, Pope M, Budge H. The ontogeny of brown adipose tissue. Annu Rev Nutr. 2015;35:295–320.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    Heaton JM. The distribution of brown adipose tissue in the human. J Anat. 1972;112(Pt 1):35–9.

    • PubMed
    • Export Citation
  • [8]

    Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013;19:635–9.

    • Crossref
    • PubMed
    • Export Citation
  • [9]

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    • Crossref
    • PubMed
    • Export Citation
  • [10]

    Robinson L, Ojha S, Symonds ME, Budge H. Body mass index as a determinant of brown adipose tissue function in healthy children. J Pediatr. 2014;e1164:318–22.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    Symonds ME, Henderson K, Elvidge L, Bosman C, Sharkey D, Perkins AC, et al. Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. 2012;161:892–8.

    • Crossref
    • PubMed
    • Export Citation
  • [12]

    Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in humans. J Clin Endocrinol Metab. 2011;96:192–9.

    • Crossref
    • PubMed
    • Export Citation
  • [13]

    Yoneshiro T, Aita S, Matsushita M, Okamatsu-Ogura Y, Kameya T, Kawai Y, et al. Age-related decrease in cold-activated brown adipose tissue and accumulation of body fat in healthy humans. Obesity (Silver Spring). 2011;19:1755–60.

    • Crossref
    • PubMed
    • Export Citation
  • [14]

    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.

    • Crossref
    • PubMed
    • Export Citation
  • [15]

    De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V, et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis. 2013;23:582–90.

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22:219–27.

    • Crossref
    • PubMed
    • Export Citation
  • [17]

    Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013;5:1196–203.

    • Crossref
    • PubMed
    • Export Citation
  • [18]

    Poekes L, Lanthier N, Leclercq IA. Brown adipose tissue: a potential target in the fight against obesity and the metabolic syndrome. Clin Sci (Lond). 2015;129:933–49.

    • Crossref
    • PubMed
    • Export Citation
  • [19]

    Maloney SK, Fuller A, Mitchell D, Gordon C, Overton JM. Translating animal model research: does it matter that our rodents are cold?. Physiology (Bethesda). 2014;29:413–20.

    • PubMed
    • Export Citation
  • [20]

    Kalinovich AV, de Jong JM, Cannon B, Nedergaard J. UCP1 in adipose tissues: two steps to full browning. Biochimie. 2017;134:127–37.

    • Crossref
    • PubMed
    • Export Citation
  • [21]

    Cantley J. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. Mamm Genome. 2014;25:442–54.

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    Villarroya F, Vidal-Puig A. Beyond the sympathetic tone: the new brown fat activators. Cell Metab. 2013;17:638–43.

    • Crossref
    • PubMed
    • Export Citation
  • [23]

    Cooney GJ, Caterson ID, Newsholme EA. The effect of insulin and noradrenaline on the uptake of 2-[1-14C]deoxyglucose in vivo by brown adipose tissue and other glucose-utilising tissues of the mouse. FEBS Lett. 1985;188:257–61.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

    Zaid H, Antonescu CN, Randhawa VK, Klip A. Insulin action on glucose transporters through molecular switches, tracks and tethers. Biochem J. 2008;413:201–15.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    Marette A, Bukowiecki LJ. Stimulation of glucose transport by insulin and norepinephrine in isolated rat brown adipocytes. Am J Physiol. 1989;257(4 Pt 1):C714–21.

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    Dallner OS, Chernogubova E, Brolinson KA, Bengtsson T. Beta3-adrenergic receptors stimulate glucose uptake in brown adipocytes by two mechanisms independently of glucose transporter 4 translocation. Endocrinology. 2006;147:5730–9.

    • Crossref
    • PubMed
    • Export Citation
  • [27]

    Olsen JM, Sato M, Dallner OS, Sandstrom AL, Pisani DF, Chambard JC, et al. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J Cell Biol. 2014;207:365–74.

    • Crossref
    • PubMed
    • Export Citation
  • [28]

    Chernogubova E, Cannon B, Bengtsson T. Norepinephrine increases glucose transport in brown adipocytes via beta3-adrenoceptors through a cAMP, PKA, and PI3-kinase-dependent pathway stimulating conventional and novel PKCs. Endocrinology. 2004;145:269–80.

    • Crossref
    • PubMed
    • Export Citation
  • [29]

    Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63:4089–99.

    • Crossref
    • PubMed
    • Export Citation
  • [30]

    Hao Q, Yadav R, Basse AL, Petersen S, Sonne SB, Rasmussen S, et al. Transcriptome profiling of brown adipose tissue during cold exposure reveals extensive regulation of glucose metabolism. Am J Physiol Endocrinol Metab. 2015;308:E380–92.

    • Crossref
    • PubMed
    • Export Citation
  • [31]

    Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014;63:3686–98.

    • Crossref
    • PubMed
    • Export Citation
  • [32]

    Blondin DP, Labbe SM, Phoenix S, Guerin B, Turcotte EE, Richard D, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593:701–14.

    • Crossref
    • Export Citation
  • [33]

    Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015;21:863–5.

    • Crossref
    • PubMed
    • Export Citation
  • [34]

    Lee P, Bova R, Schofield L, Bryant W, Dieckmann W, Slattery A, et al. Brown adipose tissue exhibits a glucose-responsive thermogenic biorhythm in humans. Cell Metab. 2016;23:602–9.

    • Crossref
    • PubMed
    • Export Citation
  • [35]

    Gunawardana SC, Piston DW. Insulin-independent reversal of type 1 diabetes in nonobese diabetic mice with brown adipose tissue transplant. Am J Physiol Endocrinol Metab. 2015;308:E1043–55.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123:215–23.

    • Crossref
    • PubMed
    • Export Citation
  • [37]

    Yuan X, Hu T, Zhao H, Huang Y, Ye R, Lin J, et al. Brown adipose tissue transplantation ameliorates polycystic ovary syndrome. Proc Natl Acad Sci U S A. 2016;113:2708–13.

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    Turban S, Stretton C, Drouin O, Green CJ, Watson ML, Gray A, et al. Defining the contribution of AMP-activated protein kinase (AMPK) and protein kinase C (PKC) in regulation of glucose uptake by metformin in skeletal muscle cells. J Biol Chem. 2012;287:20088–99.

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    • Crossref
    • PubMed
    • Export Citation
  • [40]

    Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063–9.

    • Crossref
    • PubMed
    • Export Citation
  • [41]

    Beiroa D, Imbernon M, Gallego R, Senra A, Herranz D, Villarroya F, et al. GLP-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic AMPK. Diabetes. 2014;63:3346–58.

    • Crossref
    • PubMed
    • Export Citation
  • [42]

    Tokubuchi I, Tajiri Y, Iwata S, Hara K, Wada N, Hashinaga T, et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS One. 2017;12:e0171293.

    • Crossref
    • PubMed
    • Export Citation
  • [43]

    Keates AC, Bailey CJ. Metformin does not increase energy expenditure of brown fat. Biochem Pharmacol. 1993;45:971–3.

    • Crossref
    • PubMed
    • Export Citation
  • [44]

    Rouru J, Isaksson K, Santti E, Huupponen R, Koulu M. Metformin and brown adipose tissue thermogenetic activity in genetically obese Zucker rats. Eur J Pharmacol. 1993;246:67–71.

    • Crossref
    • Export Citation
  • [45]

    Savontaus E, Rouru J, Boss O, Huupponen R, Koulu M. Differential regulation of uncoupling proteins by chronic treatments with beta 3-adrenergic agonist BRL 35135 and metformin in obese fa/fa Zucker rats. Biochem Biophys Res Commun. 1998;246:899–904.

    • Crossref
    • PubMed
    • Export Citation
  • [46]

    Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu MJ, et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 2016;6:34345.

    • Crossref
    • PubMed
    • Export Citation
  • [47]

    Giralt M, Gavalda-Navarro A, Villarroya F. Fibroblast growth factor-21, energy balance and obesity. Mol Cell Endocrinol. 2015;418(Pt 1):66–73.

    • Crossref
    • PubMed
    • Export Citation
  • [48]

    Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, et al. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell. 2012;148:556–67.

    • Crossref
    • PubMed
    • Export Citation
  • [49]

    Moyers JS, Shiyanova TL, Mehrbod F, Dunbar JD, Noblitt TW, Otto KA, et al. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J Cell Physiol. 2007;210:1–6.

    • Crossref
    • PubMed
    • Export Citation
  • [50]

    Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, et al. Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology. 2015;156:2470–81.

    • Crossref
    • PubMed
    • Export Citation
  • [51]

    Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.

    • Crossref
    • PubMed
    • Export Citation
  • [52]

    Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes. 2011;60:2758–62.

    • Crossref
    • PubMed
    • Export Citation
  • [53]

    Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59:2781–9.

    • Crossref
    • PubMed
    • Export Citation
  • [54]

    Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153:69–80.

    • Crossref
    • PubMed
    • Export Citation
  • [55]

    Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426–37.

    • Crossref
    • PubMed
    • Export Citation
  • [56]

    Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333–40.

    • Crossref
    • PubMed
    • Export Citation
  • [57]

    Kharitonenkov A, Shanafelt AB. FGF21: a novel prospect for the treatment of metabolic diseases. Curr Opin Investig Drugs. 2009;10:359–64.

    • PubMed
    • Export Citation
  • [58]

    Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250–9.

    • Crossref
    • PubMed
    • Export Citation
  • [59]

    Bernardo B, Lu M, Bandyopadhyay G, Li P, Zhou Y, Huang J, et al. FGF21 does not require interscapular brown adipose tissue and improves liver metabolic profile in animal models of obesity and insulin-resistance. Sci Rep. 2015;5:11382.

    • Crossref
    • PubMed
    • Export Citation
  • [60]

    Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018–27.

    • Crossref
    • PubMed
    • Export Citation
  • [61]

    Camporez JP, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, et al. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology. 2013;154:3099–109.

    • Crossref
    • PubMed
    • Export Citation
  • [62]

    Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 2010;11:206–12.

    • Crossref
    • PubMed
    • Export Citation
  • [63]

    Samms RJ, Smith DP, Cheng CC, Antonellis PP, Perfield JW, Kharitonenkov A, et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 2015;11:991–9.

    • Crossref
    • PubMed
    • Export Citation
  • [64]

    Dong JQ, Rossulek M, Somayaji VR, Baltrukonis D, Liang Y, Hudson K, et al. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol. 2015;80:1051–63.

    • Crossref
    • Export Citation
  • [65]

    Dockray GJ. Enteroendocrine cell signalling via the vagus nerve. Curr Opin Pharmacol. 2013;13:954–8.

    • Crossref
    • PubMed
    • Export Citation
  • [66]

    Sisley S, Gutierrez-Aguilar R, Scott M, D’Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide’s anorectic but not glucose-lowering effect. J Clin Invest. 2014;124:2456–63.

    • Crossref
    • PubMed
    • Export Citation
  • [67]

    Matthews JE, Stewart MW, De Boever EH, Dobbins RL, Hodge RJ, Walker SE, et al. Pharmacodynamics, pharmacokinetics, safety, and tolerability of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in patients with type 2 diabetes. J Clin Endocrinol Metab. 2008;93:4810–7.

    • Crossref
    • PubMed
    • Export Citation
  • [68]

    Lockie SH, Heppner KM, Chaudhary N, Chabenne JR, Morgan DA, Veyrat-Durebex C, et al. Direct control of brown adipose tissue thermogenesis by central nervous system glucagon-like peptide-1 receptor signaling. Diabetes. 2012;61:2753–62.

    • Crossref
    • PubMed
    • Export Citation
  • [69]

    Kooijman S, Wang Y, Parlevliet ET, Boon MR, Edelschaap D, Snaterse G, et al. Central GLP-1 receptor signalling accelerates plasma clearance of triacylglycerol and glucose by activating brown adipose tissue in mice. Diabetologia. 2015;58:2637–46.

    • Crossref
    • PubMed
    • Export Citation
  • [70]

    Heppner KM, Marks S, Holland J, Ottaway N, Smiley D, Dimarchi R, et al. Contribution of brown adipose tissue activity to the control of energy balance by GLP-1 receptor signalling in mice. Diabetologia. 2015;58:2124–32.

    • Crossref
    • PubMed
    • Export Citation
  • [71]

    Tomas E, Stanojevic V, McManus K, Khatri A, Everill P, Bachovchin WW, et al. GLP-1(32–36)amide pentapeptide increases basal energy expenditure and inhibits weight gain in obese mice. Diabetes. 2015;64:2409–19.

    • Crossref
    • PubMed
    • Export Citation
  • [72]

    Wei Q, Li L, Chen JA, Wang SH, Sun ZL. Exendin-4 improves thermogenic capacity by regulating fat metabolism on brown adipose tissue in mice with diet-induced obesity. Ann Clin Lab Sci. 2015;45:158–65.

    • PubMed
    • Export Citation
  • [73]

    Xu F, Lin B, Zheng X, Chen Z, Cao H, Xu H, et al. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia. 2016;59:1059–69.

    • Crossref
    • PubMed
    • Export Citation
  • [74]

    Dimitriadis G, Mitrou P, Lambadiari V, Maratou E, Raptis SA. Insulin effects in muscle and adipose tissue. Diabetes Res Clin Pract. 2011;93(Suppl 1):S52–9.

    • Crossref
    • PubMed
    • Export Citation
  • [75]

    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.

    • Crossref
    • PubMed
    • Export Citation
  • [76]

    Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    • Crossref
    • PubMed
    • Export Citation
  • [77]

    Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res. 2014;55:2276–86.

    • Crossref
    • PubMed
    • Export Citation
  • [78]

    Laplante M, Festuccia WT, Soucy G, Blanchard PG, Renaud A, Berger JP, et al. Tissue-specific postprandial clearance is the major determinant of PPARgamma-induced triglyceride lowering in the rat. Am J Physiol Regul Integr Comp Physiol. 2009;296:R57–66.

    • Crossref
    • PubMed
    • Export Citation
  • [79]

    Dijk W, Heine M, Vergnes L, Boon MR, Schaart G, Hesselink MK, et al. ANGPTL4 mediates shuttling of lipid fuel to brown adipose tissue during sustained cold exposure. Elife. 2015;4:e08428.

    • Crossref
    • PubMed
    • Export Citation
  • [80]

    Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, et al. Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 2015;6:6356.

    • Crossref
    • PubMed
    • Export Citation
  • [81]

    Dong M, Yang X, Lim S, Cao Z, Honek J, Lu H, et al. Cold exposure promotes atherosclerotic plaque growth and instability via UCP1-dependent lipolysis. Cell Metab. 2013;18:118–29.

    • Crossref
    • PubMed
    • Export Citation
  • [82]

    Zadelaar S, Kleemann R, Verschuren L, de Vries-Van der Weij J, van der Hoorn J, Princen HM, et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler Thromb Vasc Biol. 2007;27:1706–21.

    • Crossref
    • PubMed
    • Export Citation
  • [83]

    von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, et al. Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 2017;25:248–61.

    • Crossref
    • PubMed
    • Export Citation
  • [84]

    Wang Q, Zhang M, Xu M, Gu W, Xi Y, Qi L, et al. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One. 2015;10:e0123795.

    • Crossref
    • PubMed
    • Export Citation
  • [85]

    Chechi K, Blanchard PG, Mathieu P, Deshaies Y, Richard D. Brown fat like gene expression in the epicardial fat depot correlates with circulating HDL-cholesterol and triglycerides in patients with coronary artery disease. Int J Cardiol. 2013;167:2264–70.

    • Crossref
    • PubMed
    • Export Citation
  • [86]

    Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122:545–52.

    • Crossref
    • PubMed
    • Export Citation
  • [87]

    Blondin DP, Labbe SM, Noll C, Kunach M, Phoenix S, Guerin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64:2388–97.

    • Crossref
    • PubMed
    • Export Citation
  • [88]

    Chondronikola M, Volpi E, Borsheim E, Porter C, Saraf MK, Annamalai P, et al. Brown adipose tissue activation is linked to distinct systemic effects on lipid metabolism in humans. Cell Metab. 2016;23:1200–6.

    • Crossref
    • PubMed
    • Export Citation
  • [89]

    Johnson F, Mavrogianni A, Ucci M, Vidal-Puig A, Wardle J. Could increased time spent in a thermal comfort zone contribute to population increases in obesity?. Obes Rev. 2011;12:543–51.

    • Crossref
    • Export Citation
  • [90]

    Betz MJ, Enerback S. Human brown adipose tissue: what we have learned so far. Diabetes. 2015;64:2352–60.

    • Crossref
    • PubMed
    • Export Citation
  • [91]

    Hoeke G, Kooijman S, Boon MR, Rensen PC, Berbee JF. Role of brown fat in lipoprotein metabolism and atherosclerosis. Circ Res. 2016;118:173–82.

    • Crossref
    • PubMed
    • Export Citation
  • [92]

    Rothwell NJ, Stock MJ. Luxuskonsumption, diet-induced thermogenesis and brown fat: the case in favour. Clin Sci (Lond). 1983;64:19–23.

    • Crossref
    • Export Citation
  • [93]

    Fromme T, Klingenspor M. Uncoupling protein 1 expression and high-fat diets. Am J Physiol Regul Integr Comp Physiol. 2011;300:R1–8.

    • Crossref
    • PubMed
    • Export Citation
  • [94]

    Hanssen MJ, Wierts R, Hoeks J, Gemmink A, Brans B, Mottaghy FM, et al. Glucose uptake in human brown adipose tissue is impaired upon fasting-induced insulin resistance. Diabetologia. 2015;58:586–95.

    • Crossref
    • PubMed
    • Export Citation
  • [95]

    Vosselman MJ, Brans B, van der Lans AA, Wierts R, van Baak MA, Mottaghy FM, et al. Brown adipose tissue activity after a high-calorie meal in humans. Am J Clin Nutr. 2013;98:57–64.

    • Crossref
    • PubMed
    • Export Citation
  • [96]

    Peterson CM, Orooji M, Johnson DN, Naraghi-Pour M, Ravussin E. Brown adipose tissue does not seem to mediate metabolic adaptation to overfeeding in men. Obesity (Silver Spring). 2017;25:502–5.

    • Crossref
    • PubMed
    • Export Citation
  • [97]

    Blondin DP, Tingelstad HC, Noll C, Frisch F, Phoenix S, Guerin B, et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat Commun. 2017;8:14146.

    • Crossref
    • PubMed
    • Export Citation
  • [98]

    Iacobellis G. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat Rev Endocrinol. 2015;11:363–71.

    • Crossref
    • PubMed
    • Export Citation
  • [99]

    Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernandez-Alfonso MS. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab. 2015;26:367–75.

    • Crossref
    • PubMed
    • Export Citation
  • [100]

    Aldiss P, Davies G, Woods R, Budge H, Sacks HS, Symonds ME. ‘Browning’ the cardiac and peri-vascular adipose tissues to modulate cardiovascular risk. Int J Cardiol. 2017;228:265–74.

    • Crossref
    • PubMed
    • Export Citation
  • [101]

    Yamaguchi Y, Cavallero S, Patterson M, Shen H, Xu J, Kumar SR, et al. Adipogenesis and epicardial adipose tissue: a novel fate of the epicardium induced by mesenchymal transformation and PPARgamma activation. Proc Natl Acad Sci U S A. 2015;112:2070–5.

    • Crossref
    • PubMed
    • Export Citation
  • [102]

    Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153:907–17.

    • Crossref
    • PubMed
    • Export Citation
  • [103]

    Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci (Lond). 2012;122:1–12.

    • Crossref
    • PubMed
    • Export Citation
  • [104]

    Gao YJ, Lu C, Su LY, Sharma AM, Lee RM. Modulation of vascular function by perivascular adipose tissue: the role of endothelium and hydrogen peroxide. Br J Pharmacol. 2007;151:323–31.

    • PubMed
    • Export Citation
  • [105]

    Lee RM, Lu C, Su LY, Gao YJ. Endothelium-dependent relaxation factor released by perivascular adipose tissue. J Hypertens. 2009;27:782–90.

    • Crossref
    • PubMed
    • Export Citation
  • [106]

    Marchington JM, Mattacks CA, Pond CM. Adipose tissue in the mammalian heart and pericardium: structure, foetal development and biochemical properties. Comp Biochem Physiol B. 1989;94:225–32.

    • Crossref
    • PubMed
    • Export Citation
  • [107]

    Marchington JM, Pond CM. Site-specific properties of pericardial and epicardial adipose tissue: the effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int J Obes. 1990;14:1013–22.

    • PubMed
    • Export Citation
  • [108]

    Sacks HS, Fain JN, Holman B, Cheema P, Chary A, Parks F, et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: epicardial fat functioning as brown fat. J Clin Endocrinol Metab. 2009;94:3611–5.

    • Crossref
    • PubMed
    • Export Citation
  • [109]

    Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag. 2013;9:105–16.

    • PubMed
    • Export Citation
  • [110]

    Ozen G, Daci A, Norel X, Topal G. Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling. Eur J Pharmacol. 2015;766:16–24.

    • Crossref
    • PubMed
    • Export Citation
  • [111]

    Ojha S, Fainberg HP, Wilson V, Pelella G, Castellanos M, May ST, et al. Gene pathway development in human epicardial adipose tissue during early life. JCI Insight. 2016;1:e87460.

    • PubMed
    • Export Citation
  • [112]

    Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, et al. Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab. 2013;98:E1448–55.

    • Crossref
    • PubMed
    • Export Citation
  • [113]

    Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, et al. Vascular rarefaction mediates whitening of brown fat in obesity. J Clin Invest. 2014;124:2099–112.

    • Crossref
    • PubMed
    • Export Citation
  • [114]

    Shimizu I, Walsh K. The whitening of brown fat and its implications for weight management in obesity. Curr Obes Rep. 2015;4:224–9.

    • Crossref
    • PubMed
    • Export Citation
  • [115]

    Roberts-Toler C, O’Neill BT, Cypess AM. Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring). 2015;23:1765–70.

    • Crossref
    • PubMed
    • Export Citation
  • [116]

    Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–78.

    • Crossref
    • PubMed
    • Export Citation
  • [117]

    Buckley ML, Ramji DP. The influence of dysfunctional signaling and lipid homeostasis in mediating the inflammatory responses during atherosclerosis. Biochim Biophys Acta. 2015;1852:1498–510.

    • Crossref
    • PubMed
    • Export Citation
  • [118]

    Carriere A, Jeanson Y, Berger-Muller S, Andre M, Chenouard V, Arnaud E, et al. Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes. 2014;63:3253–65.

    • Crossref
    • PubMed
    • Export Citation
  • [119]

    Dozio E, Vianello E, Briganti S, Fink B, Malavazos AE, Scognamiglio ET, et al. Increased reactive oxygen species production in epicardial adipose tissues from coronary artery disease patients is associated with brown-to-white adipocyte trans-differentiation. Int J Cardiol. 2014;174:413–4.

    • Crossref
    • PubMed
    • Export Citation
  • [120]

    Friederich-Persson M, Nguyen Dinh Cat A, Persson P, Montezano AC, Touyz RM. Brown adipose tissue regulates small artery function through NADPH oxidase 4-derived hydrogen peroxide and redox-sensitive protein kinase G-1alpha. Arterioscler Thromb Vasc Biol. 2017;37:455–65.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Hormone Molecular Biology and Clinical Investigation is dedicated to the provision of data on molecular aspects of hormones in physiology and pathophysiology. The journal covers the treatment of diseases, such as endocrine cancers, renal and lymphoid carcinoma, hypertension, cardiovascular systems, osteoporosis, hormone deficiency in menopause and andropause, obesity, diabetes, brain and related diseases.

Search