Neck adipose tissue – tying ties in metabolic disorders

Vlatka Pandzic Jaksic 1 , Danijela Grizelj 2 , Ana Livun 3 , Drago Boscic 4 , Marko Ajduk 5 , Rajko Kusec 3 , 6 ,  and Ozren Jaksic 6
  • 1 Department of Endocrinology, Dubrava University Hospital, Av. G. Šuška 6, 10000 Zagreb, Croatia
  • 2 Department of Cardiology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • 3 Department of Molecular Biology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • 4 Department of Otorhinolaryngology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • 5 Department of Vascular Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia
  • 6 Department of Hematology, Dubrava University Hospital, 10000 Zagreb, Croatia
Vlatka Pandzic Jaksic
  • Corresponding author
  • Department of Endocrinology, Dubrava University Hospital, Av. G. Šuška 6, 10000 Zagreb, Croatia
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Danijela Grizelj, Ana Livun
  • Department of Molecular Biology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Drago Boscic
  • Department of Otorhinolaryngology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Marko Ajduk
  • Department of Vascular Surgery, Dubrava University Hospital, 10000 Zagreb, Croatia
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rajko Kusec
  • Department of Molecular Biology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • Department of Hematology, Dubrava University Hospital, 10000 Zagreb, Croatia
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Ozren Jaksic

Abstract

Upper body adipose tissue accumulation has been associated with clustering of metabolic disorders and increased cardiovascular risk. Neck circumference (NC) indicated that subcutaneous adipose tissue (SAT) in that region is an independent pathogenic depot that might account for the additional risk missed by visceral adipose tissue (VAT). Neck adipose tissue (NAT) is not only one more ectopic depot but has several particular features that might modulate its metabolic role. Besides a controversial impact on obstructive apnea syndrome, neck fat encompasses carotid arteries as an important perivascular adipose tissue (PVAT) depot. With dysfunctional changes in obesity, physiologic vascular regulation is lost and inflammatory signals accelerate atherogenesis. Unexpected was the discovery of brown and beige adipocytes in the neck of human adults. When stimulated, brown adipose tissue (BAT) dissipates energy through thermogenesis and it is associated with other favorable metabolic effects. Moreover, the neck is the region where the browning mechanism was disclosed. With this unique plastic nature, NAT revealed multiple ties, challenging dynamics and potential new therapeutic targets that might have significant implications on metabolic outcomes and vascular risk.

  • [1]

    Haslam D. Obesity: a medical history. Obes Rev. 2007;8:31–6.

  • [2]

    Vague J. La differentiation sexuelle, facteur determinant des formes de robeslte. La Presse medicale. 1947;55:339.

  • [3]

    Despres JP, Moorjani S, Lupien PJ, Tremblay A, Nadeau A, Bouchard C. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis (Dallas, Tex). 1990;10:497–511.

    • PubMed
    • Export Citation
  • [4]

    Kannel WB, Cupples LA, Ramaswami R, Stokes J, 3rd, Kreger BE, Higgins M. Regional obesity and risk of cardiovascular disease; the Framingham Study. J Clin Epidemiol. 1991;44:183–90.

    • Crossref
    • PubMed
    • Export Citation
  • [5]

    Wronska A, Kmiec Z. Structural and biochemical characteristics of various white adipose tissue depots. Acta Physiol (Oxford, UK). 2012;205:194–208.

    • Crossref
    • Export Citation
  • [6]

    Goodpaster BH, Krishnaswami S, Harris TB, Katsiaras A, Kritchevsky SB, Simonsick EM, et al. Obesity, regional body fat distribution, and the metabolic syndrome in older men and women. Arch Intern Med. 2005;165:777–83.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    Matsuzawa Y. The role of fat topology in the risk of disease. Int J Obes. 2008;32:S83–92.

    • Crossref
    • Export Citation
  • [8]

    Karastergiou K, Smith SR, Greenberg AS, Fried SK. Sex differences in human adipose tissues – the biology of pear shape. Biol Sex Differ. 2012;3:13.

    • Crossref
    • PubMed
    • Export Citation
  • [9]

    Pandzic Jaksic V, Grizelj D. Under the surface of subcutaneous adipose tissue biology. Acta Dermatovenerol Croat. 2016;24:250–60.

    • PubMed
    • Export Citation
  • [10]

    Ben-Noun L, Sohar E, Laor A. Neck circumference as a simple screening measure for identifying overweight and obese patients. Obes Res. 2001;9:470–7.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    Stabe C, Vasques AC, Lima MM, Tambascia MA, Pareja JC, Yamanaka A, et al. Neck circumference as a simple tool for identifying the metabolic syndrome and insulin resistance: results from the Brazilian Metabolic Syndrome Study. Clin Endocrinol (Oxf). 2013;78:874–81.

    • Crossref
    • PubMed
    • Export Citation
  • [12]

    Sjostrom CD, Hakangard AC, Lissner L, Sjostrom L. Body compartment and subcutaneous adipose tissue distribution--risk factor patterns in obese subjects. Obes Res. 1995;3:9–22.

    • Crossref
    • Export Citation
  • [13]

    Ben-Noun L, Laor A. Relationship of neck circumference to cardiovascular risk factors. Obes Res. 2003;11:226–31.

    • Crossref
    • PubMed
    • Export Citation
  • [14]

    Yang GR, Yuan SY, Fu HJ, Wan G, Zhu LX, Bu XL, et al. Neck circumference positively related with central obesity, overweight, and metabolic syndrome in Chinese subjects with type 2 diabetes: Beijing Community Diabetes Study 4. Diabetes Care. 2010;33:2465–7.

    • Crossref
    • PubMed
    • Export Citation
  • [15]

    Huang BX, Zhu MF, Wu T, Zhou JY, Liu Y, Chen XL, et al. Neck circumference, along with other anthropometric indices, has an independent and additional contribution in predicting fatty liver disease. PLoS One. 2015;10:e0118071.

    • Crossref
    • PubMed
    • Export Citation
  • [16]

    Fitch KV, Stanley TL, Looby SE, Rope AM, Grinspoon SK. Relationship between neck circumference and cardiometabolic parameters in HIV-infected and non-HIV-infected adults. Diabetes Care. 2011;34:1026–31.

    • Crossref
    • PubMed
    • Export Citation
  • [17]

    Dai Y, Wan X, Li X, Jin E, Li X. Neck circumference and future cardiovascular events in a high-risk population – A prospective cohort study. Lipids Health Dis. 2016;15:46.

    • Crossref
    • Export Citation
  • [18]

    Preis SR, Massaro JM, Hoffmann U, D’Agostino RB, Sr., Levy D, Robins SJ, et al. Neck circumference as a novel measure of cardiometabolic risk: the Framingham Heart study. J Clin Endocrinol Metab. 2010;95:3701–10.

    • Crossref
    • PubMed
    • Export Citation
  • [19]

    Mittendorfer B. Origins of metabolic complications in obesity: adipose tissue and free fatty acid trafficking. Curr Opin Clin Nutr Metab Care. 2011;14:535–41.

    • Crossref
    • PubMed
    • Export Citation
  • [20]

    Rosenquist KJ, Therkelsen KE, Massaro JM, Hoffmann U, Fox CS. Development and reproducibility of a computed tomography-based measurement for upper body subcutaneous neck fat. J Am Heart Assoc. 2014;3:e000979.

    • PubMed
    • Export Citation
  • [21]

    Torriani M, Gill CM, Daley S, Oliveira AL, Azevedo DC, Bredella MA. Compartmental neck fat accumulation and its relation to cardiovascular risk and metabolic syndrome. Am J Clin Nutr. 2014;100:1244–51.

    • Crossref
    • PubMed
    • Export Citation
  • [22]

    Shigeta Y, Enciso R, Ogawa T, Ikawa T, Clark GT. Cervical CT derived neck fat tissue distribution differences in Japanese males and females and its effect on retroglossal and retropalatal airway volume. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106:275–84.

    • Crossref
    • PubMed
    • Export Citation
  • [23]

    Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, et al. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013;19:635–9.

    • Crossref
    • PubMed
    • Export Citation
  • [24]

    Maresky HS, Sharfman Z, Ziv-Baran T, Gomori JM, Copel L, Tal S. Anthropometric assessment of neck adipose tissue and airway volume using multidetector computed tomography: an imaging approach and association with overall mortality. Medicine (Baltimore). 2015;94:e1991.

    • Crossref
    • PubMed
    • Export Citation
  • [25]

    Lee JJ, Pedley A, Therkelsen KE, Hoffmann U, Massaro JM, Levy D, et al. Upper body subcutaneous fat is associated with cardiometabolic risk factors. Am J Med. 2017;130:958–66 e1.

    • Crossref
    • PubMed
    • Export Citation
  • [26]

    Martin ML, Jensen MD. Effects of body fat distribution on regional lipolysis in obesity. Eur J Clin Invest. 1991;88:609–13.

    • Crossref
    • Export Citation
  • [27]

    Guo Z, Hensrud DD, Johnson CM, Jensen MD. Regional postprandial fatty acid metabolism in different obesity phenotypes. Diabetes. 1999;48:1586–92.

    • Crossref
    • PubMed
    • Export Citation
  • [28]

    Romero-Corral A, Caples SM, Lopez-Jimenez F, Somers VK. Interactions between obesity and obstructive sleep apnea: implications for treatment. Chest. 2010;137:711–9.

    • Crossref
    • PubMed
    • Export Citation
  • [29]

    Garg A. Acquired and inherited lipodystrophies. N Engl J Med. 2004;350:1220–34.

    • Crossref
    • PubMed
    • Export Citation
  • [30]

    Chen K, Xie Y, Hu P, Zhao S, Mo Z. Multiple symmetric lipomatosis: substantial subcutaneous adipose tissue accumulation did not induce glucose and lipid metabolism dysfunction. Ann Nutr Metab. 2010;57:68–73.

    • Crossref
    • PubMed
    • Export Citation
  • [31]

    Fox CS, Massaro JM, Schlett CL, Lehman SJ, Meigs JB, O’Donnell CJ, et al. Periaortic fat deposition is associated with peripheral arterial disease: the Framingham heart study. Circ Cardiovasc Imaging. 2010;3:515–9.

    • Crossref
    • PubMed
    • Export Citation
  • [32]

    Rosenquist KJ, Massaro JM, Pencina KM, D’Agostino RB, Beiser A, O’Connor GT, et al. Neck circumference, carotid wall intima-media thickness, and incident stroke. Diabetes Care. 2013;36:e153–4.

    • Crossref
    • PubMed
    • Export Citation
  • [33]

    Baena CP, Lotufo PA, Santos IS, Goulart AC, Bittencourt MS, Duncan BB, et al. Neck circumference is associated with carotid intimal-media thickness but not with coronary artery calcium: Results from The ELSA-Brasil. Nutr Metab Cardiovasc Dis. 2016;26:216–22.

    • Crossref
    • PubMed
    • Export Citation
  • [34]

    Alexopoulos N, McLean DS, Janik M, Arepalli CD, Stillman AE, Raggi P. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis. 2010;210:150–4.

    • Crossref
    • PubMed
    • Export Citation
  • [35]

    Skilton MR, Serusclat A, Sethu AH, Brun S, Bernard S, Balkau B, et al. Noninvasive measurement of carotid extra-media thickness: associations with cardiovascular risk factors and intima-media thickness. JACC Cardiovasc Imaging. 2009;2:176–82.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    Falk E, Thim T, Kristensen IB. Atherosclerotic plaque, adventitia, perivascular fat, and carotid imaging. JACC Cardiovasc Imaging. 2009;2:183–6.

    • PubMed
    • Export Citation
  • [37]

    Haberka M, Gasior Z. Carotid extra-media thickness in obesity and metabolic syndrome: a novel index of perivascular adipose tissue: extra-media thickness in obesity and metabolic syndrome. Atherosclerosis. 2015;239:169–77.

    • Crossref
    • PubMed
    • Export Citation
  • [38]

    Yudkin JS, Eringa E, Stehouwer CD. “Vasocrine” signalling from perivascular fat: a mechanism linking insulin resistance to vascular disease. Lancet. 2005;365:1817–20.

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174:3425–42.

    • Crossref
    • PubMed
    • Export Citation
  • [40]

    Eringa EC, Bakker W, van Hinsbergh VW. Paracrine regulation of vascular tone, inflammation and insulin sensitivity by perivascular adipose tissue. Vascul Pharmacol. 2012;56:204–9.

    • Crossref
    • PubMed
    • Export Citation
  • [41]

    Pandzic Jaksic V, Gizdic B, Miletic Z, Trutin-Ostovic K, Jaksic O. Association of monocyte CCR2 expression with obesity and insulin resistance in postmenopausal women. Clin Invest Med. 2013;36:E24–31.

    • Crossref
    • PubMed
    • Export Citation
  • [42]

    Manka D, Chatterjee TK, Stoll LL, Basford JE, Konaniah ES, Srinivasan R, et al. Transplanted perivascular adipose tissue accelerates injury-induced neointimal hyperplasia: role of monocyte chemoattractant protein-1. Arterioscler Thromb Vasc Biol. 2014;34:1723–30.

    • Crossref
    • PubMed
    • Export Citation
  • [43]

    Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, et al. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104:541–9.

    • Crossref
    • PubMed
    • Export Citation
  • [44]

    Li C, Wang Z, Wang C, Ma Q, Zhao Y. Perivascular adipose tissue-derived adiponectin inhibits collar-induced carotid atherosclerosis by promoting macrophage autophagy. PLoS One. 2015;10:e0124031.

    • Crossref
    • PubMed
    • Export Citation
  • [45]

    Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108:2460–6.

    • Crossref
    • PubMed
    • Export Citation
  • [46]

    Iacobellis G, Pistilli D, Gucciardo M, Leonetti F, Miraldi F, Brancaccio G, et al. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine. 2005;29:251–5.

    • PubMed
    • Export Citation
  • [47]

    Sharma G, Tao M, Ding K, Yu D, King W, Deyneko G, et al. Perivascular adipose adiponectin correlates with symptom status of patients undergoing carotid endarterectomy. Stroke. 2015;46:1696–9.

    • Crossref
    • PubMed
    • Export Citation
  • [48]

    Pandzic Jaksic V, Grizelj D, Marusic M, Boscic D, Ozegovic I, Vlasic A, et al. Adiponectin gene expression in subcutaneous and deep neck adipose tissue. Endocrine Abstracts. 2014;35:P785.

  • [49]

    Hamlat-Khennaf N, Neggazi S, Ayari H, Feugier P, Bricca G, Aouichat-Bouguerra S, et al. Inflammation in the perivascular adipose tissue and atherosclerosis. C R Biol. 2017;340:156–63.

    • PubMed
    • Export Citation
  • [50]

    Akoumianakis I, Tarun A, Antoniades C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br J Pharmacol. 2017;174:3411–24.

    • Crossref
    • PubMed
    • Export Citation
  • [51]

    Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444–52.

    • Crossref
    • PubMed
    • Export Citation
  • [52]

    Hao R, Yuan L, Zhang N, Li C, Yang J. Brown adipose tissue: distribution and influencing factors on FDG PET/CT scan. J Pediatr Endocrinol Metab. 2012;25:233–7.

    • PubMed
    • Export Citation
  • [53]

    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    • Crossref
    • PubMed
    • Export Citation
  • [54]

    Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J. 2009;23:3113–20.

    • Crossref
    • PubMed
    • Export Citation
  • [55]

    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    • Crossref
    • PubMed
    • Export Citation
  • [56]

    Cypess AM, Haft CR, Laughlin MR, Hu HH. Brown fat in humans: consensus points and experimental guidelines. Cell Metab. 2014;20:408–15.

    • Crossref
    • PubMed
    • Export Citation
  • [57]

    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.

    • Crossref
    • PubMed
    • Export Citation
  • [58]

    Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154:2992–3000.

    • Crossref
    • PubMed
    • Export Citation
  • [59]

    Sidossis L, Kajimura S. Brown and beige fat in humans: thermogenic adipocytes that control energy and glucose homeostasis. J Clin Invest. 2015;125:478–86.

    • Crossref
    • Export Citation
  • [60]

    Lee P, Werner CD, Kebebew E, Celi FS. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obes. 2014;38:170–6.

    • Crossref
    • Export Citation
  • [61]

    Reddy NL, Jones TA, Wayte SC, Adesanya O, Sankar S, Yeo YC, et al. Identification of brown adipose tissue using MR imaging in a human adult with histological and immunohistochemical confirmation. J Clin Endocrinol Metab. 2014;99:E117–21.

    • Crossref
    • Export Citation
  • [62]

    Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 2013;1:353–60.

    • Crossref
    • PubMed
    • Export Citation
  • [63]

    Marlatt KL, Ravussin E. Brown adipose tissue: an update on recent findings. Curr Obes Rep. 2017;6:389–96.

    • Crossref
    • PubMed
    • Export Citation
  • [64]

    Aldiss P, Dellschaft N, Sacks H, Budge H, Symonds ME. Beyond obesity – thermogenic adipocytes and cardiometabolic health. Horm Mol Biol Clin Investig. 2017;31. Article id: 20170007.

    • PubMed
    • Export Citation
  • [65]

    Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, et al. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-gamma deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–78.

    • Crossref
    • PubMed
    • Export Citation
  • [66]

    Chechi K, Voisine P, Mathieu P, Laplante M, Bonnet S, Picard F, et al. Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci Rep. 2017;7:15566.

    • Crossref
    • PubMed
    • Export Citation
  • [67]

    Fitzgibbons TP, Czech MP. Epicardial and perivascular adipose tissues and their influence on cardiovascular disease: basic mechanisms and clinical associations. J Am Heart Assoc. 2014;3:e000582.

    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Hormone Molecular Biology and Clinical Investigation is dedicated to the provision of data on molecular aspects of hormones in physiology and pathophysiology. The journal covers the treatment of diseases, such as endocrine cancers, renal and lymphoid carcinoma, hypertension, cardiovascular systems, osteoporosis, hormone deficiency in menopause and andropause, obesity, diabetes, brain and related diseases.

Search