Carbothermal Reductive Upgrading of a Bauxite Ore Using Microwave Radiation

Abstract

The utilization of microwave radiation as the energy source for the carbothermal reductive upgrading of a bauxite ore was investigated. The bauxite ore was mechanically mixed with carbon and reacted in a quartz crucible in a multimode cavity. The iron oxide in the bauxite ore was reduced to magnetite and/or iron and the magnetic fraction was separated using a Davis Tube Tester. Three experimental arrangements were utilized: (i) microwaving of the mixture, (ii) microwaving of the mixture plus charcoal layers under ambient conditions and (iii) microwaving of the mixture plus charcoal layers in argon. The utilization of the charcoal layers resulted in more uniform heating of the sample. The effects of irradiation time, sample mass and incident power on the mass of the magnetic fraction were determined. Both the iron and the aluminum contents of the magnetic fraction were measured and using these values, the iron removal from the bauxite ore and the alumina recovery in the non-magnetic fraction were calculated. It was shown that under mildly reducing conditions, almost half of the iron could be removed as magnetite. However, the formation of hercynite limited the iron separation as magnetite and higher iron removals could only be achieved through the formation of metallic iron under more highly reducing conditions.

If the inline PDF is not rendering correctly, you can download the PDF file here.

OPEN ACCESS

Journal + Issues

High Temperature Materials and Processes offers an international publication forum for new ideas, insights and results related to high-temperature materials and processes in science and technology. The journal publishes original research papers and short communications addressing topics at the forefront of high-temperature materials research including processing of various materials at high temperatures.

Search