Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter April 30, 2013

Microstructure, Mechanical and Electrical Properties of CuO Doped 8YSZ

  • Bülent Aktaş EMAIL logo

Abstract

The effect of the addition of a small amount of CuO on the microstructure, hardness, fracture toughness and electrical conductivity properties of 8YSZ were investigated using 8 mol% yttria-stabilized cubic zirconia (8YSZ). The addition of 1 wt% CuO to 8YSZ powders were doped using a colloidal process. Undoped and CuO doped 8YSZ specimens were pressureless sintered at 1400 °C for 10 h. The grain size measurement results showed that the presence of CuO as a intergranular second phase at the grain boundaries of the 8YSZ gave rise to a decrease in the grain size. The fracture toughness values for undoped and 1 wt% CuO-doped 8YSZ specimens were obtained as 1.79 and 2.20 MPa.m1/2, respectively. The decrease in the grain size of the 8YSZ with CuO addition caused an increase in the fracture toughness. The electrical conductivity of the undoped and 1 wt% CuO-doped 8YSZ specimens was measured using a frequency response analyzer in the frequency range of 100 mHz–13 MHz and at the temperature range of 300–800 °C. The electrical conductivity results showed that there was a decrease in the grain interior, and specific grain boundary conductivity, with the addition of a small amount of CuO to 8YSZ. The presence of a second phase layer with high resistance at the grain boundaries of the 8YSZ caused a decrease in the specific grain boundary conductivity.


Harran University, Engineering Faculty, Mechanical Engineering Department, Sanliurfa 63300, Turkey

Received: 2013-1-7
Accepted: 2013-2-1
Published Online: 2013-4-30
Published in Print: 2013-12-1

©[2013] by Walter de Gruyter Berlin Boston

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/htmp-2013-0002/html
Scroll to top button