Experimental and numerical studies on failure and energy absorption of composite thin-walled square tubes under quasi-static compression loading

Haolei Mou 1 , Zhenyu Feng 1 , Jiang Xie 1 , Jun Zou 1  and Kun Zhou 1
  • 1 College of Airworthiness, Civil Aviation University of China, Tianjin, 300300, China
Haolei Mou
  • College of Airworthiness, Civil Aviation University of China, Tianjin, 300300, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Zhenyu Feng
  • Corresponding author
  • College of Airworthiness, Civil Aviation University of China, Tianjin, 300300, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Jiang Xie
  • College of Airworthiness, Civil Aviation University of China, Tianjin, 300300, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Jun Zou
  • College of Airworthiness, Civil Aviation University of China, Tianjin, 300300, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Kun Zhou
  • College of Airworthiness, Civil Aviation University of China, Tianjin, 300300, China
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

To analysis the failure and energy absorption of carbon fiber reinforced polymer (CFRP) thin-walled square tube, the quasi-static axial compression loading tests are conducted for [±45]3s square tube, and the square tube after test is scanned to further investigate the failure mechanism. Three different finite element models, i.e. single-layer shell model, multi-layer shell model and stacked shell mode, are developed by using the Puck 2000 matrix failure criterion and Yamada Sun fiber failure criterion, and three models are verified and compared according to the experimental energy absorption metrics. The experimental and simulation results show that the failure mode of [±45]3s square tube is the local buckling failure mode, and the energy are absorbed mainly by intralaminar and interlaminar delamination, fiber elastic deformation, fiber debonding and fracture, matrix deformation cracking and longitudinal crack propagation. Three different finite element models can reproduce the collapse behaviours of [±45]3s square tube to some extent, but the stacked shell model can better reproduce the failure mode, and the difference of specific energy absorption (SEA) is minimum, which shows the numerical simulation results are in better agreement with the test results.

  • [1]

    A. G. Mamalis, D. E. Manolakos, M. B. Ioannidis, and D. P. Papapostolou, “The static and dynamic and axial collapse of cfrp square tubes: finite element modeling,” Covmpos. Struct., vol. 74, pp. 213–225, 2006, https://doi.org/10.1016/j.compstruct.2005.04.006.

    • Crossref
    • Export Citation
  • [2]

    M. Waimer, D. Kohlgruber, D. Hachenberg, and H. Voggenreiter, “Experimental study of CFRP components subjected to dynamic crash loads,” Compos. Struct., vol. 105, pp. 288–299, 2013, https://doi.org/10.1016/j.compstruct.2013.05.030.

    • Crossref
    • Export Citation
  • [3]

    D. Delsart, G. Portemont, and M. Waimer, “Crash testing of a CFRP commercial aircraft sub-cargo fuselage section,” in 21st European Conference on Fracture, vol. 20-24, Catania, Italy, 2016, pp. 2198–2205.

  • [4]

    T. Liu, S. Hou, X. Nguyen, and X. Han, “Energy absorption characteristics of sandwich struc- tures with composite sheets and bio coconut core,” Compos. Part B, vol. 114, pp. 328–338, 2017, https://doi.org/10.1016/j.compositesb.2017.01.035.

    • Crossref
    • Export Citation
  • [5]

    G. Zhu, Z. Wang, X. Huo, A. Cheng, and C. Zhou, “Experimental and numerical investigation into axial compressive behaviour of thin-walled structures filled with foams and composite skeleton,” Int. J. Mech. Sci., vol. 122, pp. 104–119, 2017, https://doi.org/10.1016/j.ijmecsci.2016.12.019.

    • Crossref
    • Export Citation
  • [6]

    D. Karagiozova, D.W. Shu, G. Lu, and X. Xiang, “On the energy absorption of tube reinforced foam materials under quasi-static and dynamic compression,” Int. J. Mech. Sci., vol. 105, pp. 102–116, 2016, https://doi.org/10.1016/j.ijmecsci.2015.11.013.

    • Crossref
    • Export Citation
  • [7]

    M. Kathiresan, and K. Manisekar, “Axial crush behaviours and energy absorption characteristics of aluminium and E-glass/epoxy over-wrapped aluminium conical frusta under low velocity impact loading,” Compos. Struct., vol. 136, pp. 86–100, 2016, https://doi.org/10.1016/j.compstruct.2015.09.052.

    • Crossref
    • Export Citation
  • [8]

    D. B. Segala, P. V. Cavallaro, “Numerical investigation of energy absorption mechanisms in unidirectional composites subjected to dynamic loading events,” Comput. Mater. Sci., vol. 81, no. 81, pp. 303–312, 2014, https://doi.org/10.1016/j.commatsci.2013.08.039.

    • Crossref
    • Export Citation
  • [9]

    A. Rajaneesh, I. Sridhar, and S. Rajendran, “Failure mode maps for circular composites sandwich plates under bending,” Int. J. Mech. Sci., vol. 83, no. 3, pp. 184–195, 2014, https://doi.org/10.1016/j.ijmecsci.2014.03.029.

    • Crossref
    • Export Citation
  • [10]

    M. David, A.F. Johnson, H. Voggenreiter, “Analysis of crushing response of composite crashworthy structures,” App. Compos. Mater., vol. 20, no. 5, pp. 773–787, 2013, https://doi.org/10.1007/s10443-012-9301-8.

    • Crossref
    • Export Citation
  • [11]

    M. Waimer, M.H. Siemann, T. Feser, “Simulation of CFRP components subjected to dynamic crash loads,” Int. J. Impact Eng., vol. 101, pp. 115–131, 2017, https://doi.org/10.1016/j.ijimpeng.2016.11.011.

    • Crossref
    • Export Citation
  • [12]

    L. Wang, X. Fan, H. Chen, and W. Liu, “Axial crush behavior and energy absorption capability of foam-filled GFRP tubes under elevated and high temperatures,” Compos. Struct., vol. 149,pp. 339–350, 2016, https://doi.org/10.1016/j.compstruct.2016.04.028.

    • Crossref
    • Export Citation
  • [13]

    M. Moeinifard, G. Liaghat, G. Rahimi, A. Talezadehlari, and H. Hadavinia. “Experimental investigation on the energy absorption and contact force of unstiffened and grid-stiffened composite cylindrical shells under lateral compression,” Compos. Struct., vol. 152, no. 5, pp. 626–636, 2016, https://doi.org/10.1016/j.compstruct.2016.05.067.

    • Crossref
    • Export Citation
  • [14]

    Z. Y. Feng, H. L. Mou, T. C. Zou, and J. Ren, “Research on effects of composite skin on crashworthiness of composite fuselage section,” Int. J. Crashworth., vol. 18, no. 5, pp. 459–464, 2013, https://doi.org/10.1080/13588265.2013.805291.

    • Crossref
    • Export Citation
  • [15]

    D. Siromani, J. Awerbuch, and T. M. Tan, “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Compos. Part B-Eng., vol. 64, pp. 50–58, 2014, https://doi.org/10.1016/j.compositesb.2014.04.008.

    • Crossref
    • Export Citation
  • [16]

    E. Mahdi, and T. A. Sebaey, “An experimental investigation into crushing behavior of radially stiffened GFRP composite tubes,” Thin Wall. Struct., vol. 76, pp. 8–13, 2014, https://doi.org/10.1016/j.tws.2013.10.018.

    • Crossref
    • Export Citation
  • [17]

    H. Bohm, D. Weck, A. Hornig, A. Langkamp, F. Adam, and M. Gude, “Experimental and numerical study on the axial crushing behavior of textile-reinforced thermoplastic composite tubes,” Adv. Eng. Mater., vol. 18, pp. 437–443, 2016, https://doi.org/10.1002/adem.201500481.

    • Crossref
    • Export Citation
  • [18]

    S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels, and J. Vantomme, “Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part I: Central delamination and chamfering modelling,” Polym. Test., vol. 29, pp. 729–741, 2010, https://doi.org/10.1016/j.polymertesting.2010.05.010.

    • Crossref
    • Export Citation
  • [19]

    C. Mcgregor, R. Vaziri, and X. Xiao, “Finite element modelling of the progressive crushing of braided composite tubes under axial impact,” Int. J. Impact Eng., vol. 37, pp. 662–672, 2010, https://doi.org/10.1016/j.ijimpeng.2009.09.005.

    • Crossref
    • Export Citation
  • [20]

    H. Y. Jiang, Y. R. Ren, B. H. Gao, J. W. Xiang, and F. G. Yuan, “Design of novel plug-type triggers for composite square tubes: enhancement of energy-absorption capacity and inducing failure mechanisms,” Int. J. Mech. Sci., vol. 131-132, pp. 113–136, 2017, https://doi.org/10.1016/j.ijmecsci.2017.06.050.

    • Crossref
    • Export Citation
  • [21]

    D. D. Chen, G. Y. Sun, M. Z. Meng, G. Y. Li, and Q. Li, “Residual crashworthiness of CFRP structures with pre-impact damage - An experimental and numerical study,” Int. J. Mech. Sci., vol. 149, pp. 122–135, 2018, https://doi.org/10.1016/j.ijmecsci.2018.08.030.

    • Crossref
    • Export Citation
  • [22]

    R. D. Hussein, D. Ruan, and G. X. Lu, “An analytical model of square CFRP tubes subjected to axial compression,” Compos. Sci. Technol., vol. 168, no. 10, pp. 170–178, 2018, https://doi.org/10.1016/j.compscitech.2018.09.019.

    • Crossref
    • Export Citation
  • [23]

    B. P. Bussadori, K. Schuffenhauer, and A. Scattina, “Modelling of CFRP crushing structures in explicit crash analysis,” Compos. Part B-Eng., vol. 60, no. 1, pp. 725–735, 2014, https://doi.org/10.1016/j.compositesb.2014.01.020.

    • Crossref
    • Export Citation
  • [24]

    H. Jiang, Y. Ren, and B. Gao, “Research on the progressive damage model and trigger geometry of composite waved beam to improve crashworthiness,” Thin Wall. Struct., vol. 119, pp. 531–543, 2017, https://doi.org/10.1016/j.tws.2017.07.004.

    • Crossref
    • Export Citation
  • [25]

    Y. Ren, H. Jiang, W. Ji, H. Zhang, J. Xiang, and F. Yuan, “Improvement of progressive damage model to predicting crashworthy composite corrugated plate,” Appl. Compos. Mater., vol. 25, no.1, pp. 45–66, 2018, https://doi.org/10.1007/s10443-017-9610-z.

    • Crossref
    • Export Citation
  • [26]

    H. L. Mou, X. Su, J. Xie, and Z. Y. Feng, “Parametric analysis of composite sinusoidal specimens under quasi-static crushing,” Aeronaut, vol. 122, no. 1254, pp. 1244–1262, 2018, https://doi.org/10.1017/aer.2018.64.

    • Crossref
    • Export Citation
  • [27]

    H. L. Mou, T. C. Zou, Z. Y. Feng, and J. Xie, “Crashworthiness analysis and evaluation of fuselage section with sub-floor composite sinusoidal specimens.” Lat. Am. J. Solids Stru., vol. 13, no. 6, pp. 1187–1202, 2016.

  • [28]

    J. S. Lin, X. Wang, C. Q. Fang, and X. Huang, “Collapse loading and energy absorption of fiber-reinforced conical shells,” Compos. Part B-Eng., vol. 74, pp. 178–189, 2015, https://doi.org/10.1016/j.compositesb.2015.01.016.

    • Crossref
    • Export Citation
  • [29]

    L. W. Ying, F. P. Yang, and X. Wang, “Analytical method for the axial crushing force of fiber-reinforced tapered square metal tubes,” Compos. Struct., vol. 153, pp. 222–233, 2016, https://doi.org/10.1016/j.compstruct.2016.05.108.

    • Crossref
    • Export Citation
  • [30]

    P. Rozylo, “Experimental-numerical test of open section composite columns stability subjected to axial compression,” Archives. Mater. Sci. Eng., vol. 84, no. 2, pp. 58–64, 2017, https://doi.org/10.5604/01.3001.0010.0979.

    • Crossref
    • Export Citation
  • [31]

    A. Riccio, A. Raimondo, F. D. Caprio, and M. Fusco, “Experimental and numerical investigation on the crashworthiness of a composite fuselage sub-floor support system.” Compos. Part B-Eng., vol. 150, pp. 93–103, 2018, https://doi.org/10.1016/j.compositesb.2018.05.044.

    • Crossref
    • Export Citation
  • [32]

    Z. Y. Feng, J. Xie, S. S. Song, H. L. Mou, X. Su, and X. H. Zhang, “The failure mechanism and energy-absorbing characteristics of composite thin-walled C-channels subject to low-speed axial compression,” J. Compos. Mater., vol. 53, no. 16, pp. 2249–2259, 2019, https://doi.org/10.1177/0021998319826337.

    • Crossref
    • Export Citation
  • [33]

    J. Paz, J. Diaz, L. Romera, and M. Costas, “Crushing analysis and multi-objective crashworthiness optimization of GFRP honeycomb-filled energy absorption devices, Finite.” Elem. Anal. Des., vol. 91, no. 5, pp. 30–39, 2014, https://doi.org/10.1016/j.finel.2014.07.006.

    • Crossref
    • Export Citation
  • [34]

    J. Bi, H. Fang, Q. Wang, and X. Ren, “Modeling and optimization of foam-filled thin-walled columns for crashworthiness designs, Finite.” Elem. Anal. Des., vol. 46, no. 9, pp. 698–709, 2010, https://doi.org/10.1016/j.finel.2010.03.008.

    • Crossref
    • Export Citation
  • [35]

    H. Eihage, P. K. Mallick, and N. Zamani, “A numerical study on the quasi-static crush characteristics of square aluminum-composite hybrid tubes,” Compos. Struct., vol. 73no. 4, pp. 505–514, 2006, https://doi.org/10.1016/j.compstruct.2005.03.004.

    • Crossref
    • Export Citation
  • [36]

    G. Y. Sun, D. D. Chen, X. H. Jin, and Q. Li, “Quasi-static bending and transverse crushing behaviors for hat-shaped composite tubes made of CFRP, GFRP and their hybrid structures,” Compos. Struct., vol. 239, no. 1, Art No. 111842, 2020.

  • [37]

    D. Siromani, G. Henderson, D. Mikita, K. Mirarchi, R. Park, J. Smolko, J. Awerbuch, and T. Tan, “An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression,” Compos. Part A Appl. S., vol. 64, no. 21, pp. 25–35, 2014, https://doi.org/10.1016/j.compositesa.2014.04.019.

    • Crossref
    • Export Citation
  • [38]

    P. Feraboli, “Development of a modified flat-plate test specimen and fixture for composite materials crush energy absorption,” J. Compos. Mater., vol. 43, no. 19, pp. 1967–1990, 2009, https://doi.org/10.1177/0021998309343025.

    • Crossref
    • Export Citation
  • [39]

    S. Palanivelu, W.V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels, and J. Vantomme, “Comparative study of the quasi-static energy absorption of small-scale composite tubes with different geometrical shapes for use in sacrificial cladding structures,” Polym. Test., vol. 29, no. 3, pp. 381–396, 2010, https://doi.org/10.1016/j.polymertesting.2010.01.003.

    • Crossref
    • Export Citation
  • [40]

    T. N. Tan, S. Hou, X. Han, and M. Q. Chau, “Crushing analysis and numerical optimization of angle element structures under axial impact loading,” Compos. Struct., vol. 119, 422–435, 2015, https://doi.org/10.1016/j.compstruct.2014.09.019.

    • Crossref
    • Export Citation
  • [41]

    J. Meredith, E. Bilson, R. Powe, E. Collings, and K. Kirwan, “A performance versus cost analysis of prepreg carbon fiber epoxy energy absorption structures,” Compos. Struct., vol. 124, pp. 206–213, 2015, https://doi.org/10.1016/j.compstruct.2015.01.022.

    • Crossref
    • Export Citation
  • [42]

    A. D. Reddy, L. W. Rehfield, R. I. Bruttomesso, and N. E. Krebs, “Local buckling and crippling of thin-walled composite structures under axial compression,” J. Aircraft., vol. 26, no. 2, pp. 97–102, 2015, https://doi.org/10.2514/3.45729.

  • [43]

    L. Friedrich, S. Loosen, K. Liang, and M. Ruess, “Stacking sequence influence on imperfection sensitivity of cylindrical composite shells under axial compression,” Compos. Struct., vol. 134, pp. 750–761, 2015, https://doi.org/10.1016/j.compstruct.2015.08.132.

    • Crossref
    • Export Citation
  • [44]

    D. Hull, “A unified approach to progressive crushing of fiber-reinforced composite tubes,” Comp. Sci. & Tech., vol. 40, no. 4, pp. 377–421, 1991, https://doi.org/10.1016/0266-3538(91)90031-J.

    • Crossref
    • Export Citation
  • [45]

    G. L. Farley, and R. M. Jones, “Crushing characteristics of continuous fiber-reinforced composite tubes,” J. Comp. Mater., vol. 26. no. 1, pp. 37–50, 1992, https://doi.org/10.1177/002199839202600103.

    • Crossref
    • Export Citation
  • [46]

    A. G. Mamalis, M. Robinson, D. E. Manolakos, G. A. Demosthenous, M. B. Ioannidis, and J. Carruthers, “Crashworthy capability of composite material structures,” Comp. Struct., vol. 37, no. 2, pp. 109–134, 1997, https://doi.org/10.1016/S0263-8223(97)80005-0.

    • Crossref
    • Export Citation
  • [47]

    P. H. Thornton, “The crush of fiber-reinforced plastics.” In: Cheremisinoff, N.P., Ed., Handbook of Ceramics and Composite Volume 1: synthesis and properties, Marcel Dekker Inc., New York, 1990, pp. 307–337.

  • [48]

    P. Feraboli, “Development of a corrugated test specimen for composite material energy absorption,” J. Compos. Mater., vol. 42, no. 3, pp. 229–256, 2008, https://doi.org/10.1177/0021998307086202.

    • Crossref
    • Export Citation
  • [49]

    N. Feindler, K. Drechsler, and J. Doll, “Test method to analyse the energy absorption of composite material using flat coupon testing,” In: Proceedings of the 5th international conference on composites testing and model identification,” Lausanne, pp. 14–16, 2011.

  • [50]

    J. Huang, and X. Wang, “Numerical and experimental investigations on the axial crushing response of composite tubes,” Compos. Struct., vol. 91, no. 2, pp. 222–228, 2009, https://doi.org/10.1016/j.compstruct.2009.05.006.

    • Crossref
    • Export Citation
  • [51]

    M. W. Joosten, S. Dutton, D. Kelly, and R. Thomson, “Experimental and numerical investigation of the crushing response of an open section composite energy absorbing element,” Compos. Struct., vol. 93, no. 2, pp. 682–689, 2011, https://doi.org/10.1016/j.compstruct.2010.08.011.

    • Crossref
    • Export Citation
  • [52]

    H. Hadavinia, and H. Ghasemnejad, “Effects of Mode-I and Mode-II interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections,” Compos. Struct., vol. 89, no. 2, pp. 303–314, 2009, https://doi.org/10.1016/j.compstruct.2008.08.004.

    • Crossref
    • Export Citation
  • [53]

    S. Palanivelu, W. V. Paepegem, J. Degrieck, D. Kakogiannis, J. V. Ackeren, D. V. Hemelrijck, J. Wastiels, and J. Vantomme, “Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam: Part II - Multiple delaminations and initial geometric imperfections,” Polym. Test., vol. 29, no. 7, pp. 803–814, 2010, https://doi.org/10.1016/j.polymertesting.2010.07.005.

    • Crossref
    • Export Citation
  • [54]

    D. Siromani, J. Awerbuch, and T. M. TAN, “Finite element modeling of the crushing behavior of thin-walled CFRP tubes under axial compression,” Compos. Part B-Eng., vol. 64, no. 18, pp. 50–58, 2014, https://doi.org/10.1016/j.compositesb.2014.04.008.

    • Crossref
    • Export Citation
  • [55]

    A. F. Johnson, and M. David, “Failure mechanisms in energy-absorbing composite structures,” Philos. Mag., vol. 90, no. 31–32, pp. 4245–4261, 2010, https://doi.org/10.1080/14786435.2010.497471.

    • Crossref
    • Export Citation
  • [56]

    G. H. Zhu, G. Y. Sun, G. Y. Li, A. G. Cheng, and Q. Li, “Modeling for CFRP structures subjected to quasi-static crushing,” Compos. Struct., vol. 184, no. 2, pp. 41–55, 2018, https://doi.org/10.1016/j.compstruct.2017.09.001.

    • Crossref
    • Export Citation
  • [57]

    J. Xie, H. L. Mou, X. Su, and Z. Y. Feng, “Uncertain evaluation of crashworthiness of thin-walled composite structures,” Aircr. Eng. Aerosp. Tec., vol. 90, no. 8, pp. 1238–1248, 2018, https://doi.org/10.1108/AEAT-03-2017-0081.

    • Crossref
    • Export Citation
  • [58]

    B. Wade, P. Feraboli, M. Osborne, and M. Rassaian, Simulating Laminated Composite Materials Using LS-DYNA Material Model mat 54: Single-Element Investigation, DOT/FAA/TC-14/19, 2015, pp. 1–45.

  • [59]

    H. L. Mou, J. Xie, X. Su, and Z. Y. Feng, “Crashworthiness experiment and simulation analysis of composite thin-walled circular tubes under axial crushing,” Mech. Compos. Mater., vol. 55, no. 1, pp. 173–192, 2019, https://doi.org/10.1007/s11029-019-09797-x.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at researchers in nonlinear sciences, engineers, and computational scientists, economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.

Search