Potential of GPS Common Clock Single-differences for Deformation Monitoring

Steffen Schön 1 , Hue Kiem Pham 1 , Tobias Kersten 1 , Julia Leute 2 , and Andreas Bauch 2
  • 1 Institut für Erdmessung, Leibniz Universität Hannover, Schneiderberg 50, D-30167 Hannover, Germany
  • 2 Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
Steffen Schön, Hue Kiem Pham, Tobias Kersten, Julia Leute and Andreas Bauch

Abstract

Global satellite navigation systems (GNSS) are a standard measurement device for deformation monitoring. In many applications, double-differences are used to reduce distance dependent systematic effects, as well as to eliminate the receiver and satellites clock errors. However, due to the navigation principle of one way ranging used in GPS, the geometry of the subsequent adjustment is weakened. As a result, the height component is generally determined three times less precisely than the horizontal coordinates. In addition, large correlations between the height and elevation dependent effects exist such as tropospheric refraction, mismodelled phase center variations, or multipath which restricts the attainable accuracy. However, for a kinematic analysis, i. e. for estimating high rate coordinate time series, the situation can be significantly improved if a common clock is connected to different GNSS receivers in a network or on a baseline. Consequently, between-station single-differences are sufficient to solve for the baseline coordinates. The positioning geometry is significantly improved which is reflected by a reduction of the standard deviation of kinematic heights by about a factor 3 underlining the benefits of this new approach. Real data from baselines at the Physikalisch-Technische Bundesanstalt campus at Braunschweig where receivers are connected over 290 m via an optical fiber link to a common clock was analysed.

  • [1]

    Avallone, A., Marzario, M., Cirella, A., Piatanesi, A., Rovelli, A., Di Alessandro, C., D’Anastasio, E., D’Agostino, N., Giuliani, R., Mattone, M., (2011). Very high rate (10 Hz) GPS seismology for moderate-magnitude earthquakes: The case of the Mw 6.3 L’Aquila (central Italy) event, J.Geophys. Res., 116, B02305.

  • [2]

    Baarda, W., (1968). A Testing Procedure for Use in Geodetic Networks. Neth. Geod. Comm. Publ. on Geodesy, new series, Vol. 2, No. 5, Delft.

  • [3]

    Bischof, C. and Schön, S., (2013). Performance Evaluation of Different High-Rate GPS Receivers under Various Dynamic Stress Scenarios, Proceedings of the European Navigation Conference (ENC) 2013, April 23.–25., Vienna, Austria.

  • [4]

    Brown, A. and Sturza, M., (1990). The Effect of Geometry on Integrity Monitoring Performance. Presented at the Institute of Navigation Annual Meeting, June 1990.

  • [5]

    Brückl, E., Brunner, F. K., Lang. E, Mertl, S., Müller, M., Stary, U., (2013). The Gradenbach Observatory—monitoring deep-seated gravitational slope deformation by geodetic, hydrological, and seismological methods. Landslides 10:815–829.

  • [6]

    Häberling, S., Rothacher, M., Zhang, Y., Clinton, J., Geiger, A., (2015). Assessment of high-rate GPS using a single-axis shake table. Journal of Geodesy 89(7):697–709.

  • [7]

    Kim, D., Langley, R., Bond, J., Chranowski, A., (2003). Local deformation monitoring using GPS in an open pit mine: initial study. GPS Solutions. 7:176–185.

  • [8]

    Krawinkel T., Schön, S., (2015). Benefits of receiver clock modeling in code-based GNSS navigation, GPS Solutions online first. DOI: .

    • Crossref
    • Export Citation
  • [9]

    Larson, K. M., (2009). GPS seismology, J. Geod., 83(3), 227–233.

    • Crossref
    • Export Citation
  • [10]

    Leute, J., Bauch, A., Krawinkel, T., Schön, S., (2016). Common clock GNSS-baselines at PTB. this conference.

  • [11]

    Li, X., Ge, L., Ambikairajah, E., Rizos, C., Tamura, Y., (2005). Analysis of Seismis Response of a Tall Tower Monitored with an Integrated GPS and Accelerometer System. J. Geospatial Eng. 7(1):30–38.

  • [12]

    Lindlohr, W. and Wells, D., (1985). GPS design using undifferenced carrier beat phase observations manuscripta geodaetica 10: 255–295.

  • [13]

    Lovse, J., Teskey, W., Lachapelle, G., Cannon, E., (1994): Dynamic deformation Monitoring of Tall Structures using GPS Technology, Journal of Surveying Engineering 121(1):35–40.

    • Crossref
    • Export Citation
  • [14]

    Macias-Valadez, D., Santerre, R., Larochelle, S., Landry, R., (2012). Improving vertical GPS precision with a GPS-over-fiber architecture and real-time relative delay calibration. GPS Solutions, 16(4):449–462.

  • [15]

    Malet, J.-P., Maquaire, O., Calais, E., (2002). The use of Global Positioning System for the continuous monitoring of landslides. Application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43: 33–54.

  • [16]

    Moschas, F. and Stiros, S., (2014). PLL bandwidth and noise in 100 Hz GPS measurements. GPS Solutions, 19(2), 173–185.

    • Crossref
    • Export Citation
  • [17]

    Moschas, F. and Stiros, S., (2015). Dynamic Deflections of a Stiff Footbridge Using 100-Hz GNSS and Accelerometer Data. Journal of Surveying Engineering, 04015003.

    • Crossref
    • Export Citation
  • [18]

    Pollinger F. et al. (2015), Metrology for Long Distance Surveying: A Joint Attempt to Improve Traceability of Long Distance Measurements. IAG 150 Years - Proceedings of the 2013 IAG Scientific Assembly, Potsdam, Germany, 1–6 September, 2013, International Association of Geodesy Symposia, Vol. 143, Springer International Publishing Switzerland, doi:.

    • Crossref
    • Export Citation
  • [19]

    Ray, J. and Senior, K., (2003). IGS/BIPM pilot project: GPS carrier phase for time/frequency transfer and timescale formation. Metrologia, 40(3):270–288.

  • [20]

    Roberts, G. W., Dodson, A. H., Ashkenazi, V., Brown, C. J., Karuna, R., (1999). Comparison of GPS Measurements and Finite, Proc.ION GPS 1999, Nashville, TN, September 1999, pp. 79–84.

  • [21]

    Rothacher, M. and Beutler, G., (1998). The role of GPS in the study of global change. Physics and Chemistry of The Earth, 23(9–10):1029–1040.

  • [22]

    Santerre, R. and Beutler, G., (1993). A proposed GPS method with multi-antennae and single receiver. Bulletin Géodésique, 67:210–223.

  • [23]

    Schön, S., Wieser, A. und Macheiner, K., (2005). Accurate tropospheric correction for local GPS monitoring networks with large height differences. Proc. ION GNSS 2005, 250–260.

  • [24]

    Teunissen, P., (2000). Testing Theory: an Introduction . Series on Mathematical Geodesy and Positioning, Delft University Press, Delft University of Technology, Delft, The Netherland.

  • [25]

    Wang, K. and Rothacher, M., (2013). Stochastic modeling of high-stability ground clocks in GPS analysis, J. Geod., 87(5), 427–437.

    • Crossref
    • Export Citation
  • [26]

    Weinbach, U. and Schön, S., (2009). Evaluation of the clock stability of geodetic GPS receivers connected to an external oscillator, Proc. ION GNSS 2009, Savannah, GA, USA, 22–25 September 2009, 3317–3328.

  • [27]

    Weinbach, U. and Schön, S., (2011). GNSS receiver clock modeling when using high-precision oscillators and its impact on PPP, Adv. Space Res.,47(2), 229–238.

    • Crossref
    • Export Citation
  • [28]

    Weinbach, U. and Schön, S., (2015). Improved GPS-based co-seismic displacement monitoring using high-precision oscillators. Geophysical Research Letters 42(10):3773–3779, .

    • Crossref
    • Export Citation
  • [29]

    Weinbach, U., (2013). Feasibility and impact of receiver clock modeling in precise GPS data analysis, Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik der Leibniz Universität Hannover, Dissertation Nr. 303.

  • [30]

    Wieser, A., Brunner, F. K., (2002). Analysis of Bridge Deformations using Continuous GPS Measurements In: Kopáčik A. and Kyrinovič P. (Eds.) INGEO 2002, 2nd Conference of Engineering Surveying, Bratislava: 45–52. (2002).

  • [31]

    Xu, P., Shi, C., Fang, R., Liu, J., Niu, X., Zhang, Q., Yanagidani, T., (2013). High-rate precise point positioning (PPP) to measure seismic wave motions: an experimental comparison of GPS PPP with inertial measurement units. Journal of Geodesy 87(4):361–372.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search