Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations

M. Abrehdary 1 , 2 , L.E. Sjöberg 2 , M. Bagherbandi 2 , 3  and D. Sampietro 4
  • 1 Department of Environment and Life Sciences, Geomatics Section, SE-651 77, Karlstad, Sweden
  • 2 Division of Geodesy and Satellite Positioning, SE-100 44, Stockholm, Sweden
  • 3 Department of Industrial Development, IT and Land Management, SE-801 76, Gävle, Sweden
  • 4 GReD s.r.l., Via Valleggio 11, 22100, Como, Italy
M. Abrehdary
  • Corresponding author
  • Department of Environment and Life Sciences, Geomatics Section, University of Karlstad, SE-651 77, Karlstad, Sweden
  • Division of Geodesy and Satellite Positioning, 166474Royal Institute of Technology (KTH), SE-100 44, Stockholm, Sweden
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, L.E. Sjöberg
  • Division of Geodesy and Satellite Positioning, 166474Royal Institute of Technology (KTH), SE-100 44, Stockholm, Sweden
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, M. Bagherbandi
  • Division of Geodesy and Satellite Positioning, 166474Royal Institute of Technology (KTH), SE-100 44, Stockholm, Sweden
  • Department of Industrial Development, IT and Land Management, University of Gävle, SE-801 76, Gävle, Sweden
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and D. Sampietro


We present a combined method for estimating a new global Moho model named KTH15C, containing Moho depth and Moho density contrast (or shortly Moho parameters), from a combination of global models of gravity (GOCO05S), topography (DTM2006) and seismic information (CRUST1.0 and MDN07) to a resolution of 1° × 1° based on a solution of Vening Meinesz-Moritz’ inverse problem of isostasy. This paper also aims modelling of the observation standard errors propagated from the Vening Meinesz-Moritz and CRUST1.0 models in estimating the uncertainty of the final Moho model. The numerical results yield Moho depths ranging from 6.5 to 70.3 km, and the estimated Moho density contrasts ranging from 21 to 650 kg/m3, respectively. Moreover, test computations display that in most areas estimated uncertainties in the parameters are less than 3 km and 50 kg/m3, respectively, but they reach to more significant values under Gulf of Mexico, Chile, Eastern Mediterranean, Timor sea and parts of polar regions. Comparing the Moho depths estimated by KTH15C and those derived by KTH11C, GEMMA2012C, CRUST1.0, KTH14C, CRUST14 and GEMMA1.0 models shows that KTH15C agree fairly well with CRUST1.0 but rather poor with other models. The Moho density contrasts estimated by KTH15C and those of the KTH11C, KTH14C and VMM model agree to 112, 31 and 61 kg/m3 in RMS. The regional numerical studies show that the RMS differences between KTH15C and Moho depths from seismic information yields fits of 2 to 4 km in South and North America, Africa, Europe, Asia, Australia and Antarctica, respectively.

  • [1]

    Abrehdary, M., Sjöberg, L.E., and Bagherbandi, M. 2015. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 26(4), 607–616.

  • [2]

    Amante, C. and Eakins, B.W. 2009. ETOPO1 1 Arc-Minute global relief model: Procedures, data sources and analysis – NOAA technical memorandum NESDIS NGDC-24.

  • [3]

    Bagherbandi M. and Sjöberg L.E., 2012. Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors, 200–201, 37–44, doi: .

    • Crossref
    • Export Citation
  • [4]

    Bagherbandi, M., Tenzer, R., and Sjöberg, L.E. 2014. Moho depth uncertainties in the Vening-Meinesz Moritz inverse problem of isostasy. Studia Geophysica et Geodaetica, 58(2), 227–248.

  • [5]

    Bassin, C., Laske, G., and Masters, T.G. 2000. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 81, F897.

  • [6]

    Baranov, A. and Morelli, A, 2013. The Moho depth map of the Antarctica region. Tectonophysics, 609, 299–313.

  • [7]

    Baranov, A. and Morelli, A. 2014. The global Moho depth map for continental crust. In EGU General Assembly Conference Abstracts (Vol. 16, p. 16384).

  • [8]

    Carlson, R.L. and Raskin, G.S. 1984. Density of the ocean crust. Nature, 311(5986), 555–558.

  • [9]

    Čadek, O. and Martinec, Z. 1991. Spherical harmonic expansion of the Earth’s crustal thickness up to degree and order 30. Studia Geophysica et Geodaetica, 35(3), 151–165.

  • [10]

    Christensen, N. and Mooney, W. 1995. Seismic velocity structure and composition of the continental crust: A global view. Journal of Geophysical Research Atmospheres, 100, 9761–9788.

  • [11]

    Chulick, G. and Mooney, W. 2002. Seismic structure of the crust and uppermost mantle of North America and adjacent ocean basins: A synthesis. Bull. Seismol. Soc. Am., 92, 2478–2492.

  • [12]

    Chulick, G.S., Detweiler, S., and Mooney, W.D. 2013. Seismic structure of the crust and uppermost mantle of South America and surrounding oceanic basins. Journal of South American Earth Sciences, 42, 260–276.

  • [13]

    Eshagh, M. 2015. On the relation between Moho and sub-crustal stress induced by mantle convection. Journal of Geophysics and Engineering, 12(1), 1.

  • [14]

    Eshagh, M., Bagherbandi, M., and Sjöberg, L. 2011. A combined global Moho model based on seismic and gravimetric data. Acta Geodaetica et Geophysica Hungarica, 46(1), 25–38.

  • [15]

    Grad, M. and Tiira, T. (2009). The Moho depth map of the European Plate. Geophysical Journal International, 176(1): 279–292.

  • [16]

    Hamayun, H. 2014. Global Earth Structure Recovery from State-of-the-art Models of the Earth’s Gravity Field and Additional Geophysical Information (Doctoral dissertation, TU Delft, Delft University of Technology).

  • [17]

    Hello, Y., Ogé, A., Sukhovich, A., and Nolet, G., 2011. Modern mermaids: New floats image the deep Earth. Eos, Transactions American Geophysical Union, 92(40), 337–338.

  • [18]

    Kennett, B.L.N., Salmon, M., and Saygin, E. 2011. AusMoho: the variation of Moho depth in Australia. Geophysical Journal International, 187(2): 946–958.

  • [19]

    Laske, G., Masters, G., Ma, Z. and Pasyanos, M.E., 2013. A New Global Crustal Model at 1×1 Degrees (CRUST1.0), (

  • [20]

    Laske, G. and Masters, G. 1997. A global digital map of sediment thickness. Eos Trans. AGU, 78(F483).

  • [21]

    Lebedev, S., Adam, J.M.C., and Meier, T. 2013. Mapping the Moho with seismic surface waves: a review, resolution analysis, and recommended inversion strategies. Tectonophysics, 609, 377–394.

  • [22]

    Lloyd, S., van der Lee, S., Franca, G.S., Assumpcao, M., and Feng, M. 2010. Moho map of South America from receiver functions and surface waves. J. Geophys. Res., 115, B11315.

  • [23]

    Marone, F., Van Der Meijde, M., Van Der Lee, S., and Giardini, D. 2003. Joint inversion of local, regional and teleseismic data for crustal thickness in the Eurasia–Africa plate boundary region. Geophysical Journal International, 154(2), 499–514.

  • [24]

    Mayer-Gürr, T., et al. 2015. The combined satellite gravity field model GOCO05s. Presentation at EGU 2015, Vienna, April 2015.

  • [25]

    Meier, U., Curtis, A., and Trampert, J. 2007. Global crustal thickness from neural network inversion of surface wave data. Geophysical Journal International, 169(2): 706–722.

  • [26]

    Mooney, W.D. 2007. Crust and Lithospheric Structure – Global Crustal Structure. Treatise on Geophysics, vol. 1: Seismology and Structure of the Earth. (Eds. B. Romanowicz and A. Dziewonski). Elsevier, 361–417.

  • [27]

    Pasyanos, M.E. and Nyblade, A.A. 2007. A top to bottom lithospheric study of Africa and Arabia. Tectonophysics. 444, 27–44.

  • [28]

    Reguzzoni, M. and Sampietro, D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. International Journal of Applied Earth Observation and Geoinformation, 35, 31–43.

  • [29]

    Reguzzoni, M., Sampietro, D., and Sansò, F., 2013. Global Moho from the combination of the CRUST2. 0 model and GOCE data. Geophysical Journal International, ggt247.

  • [30]

    Sampietro, D., Reguzzoni, M., and Negretti, M., 2013. The GEMMA Crustal Model: First Validation and Data Distribution. In ESA Special Publication (Vol. 722, p. 30).

  • [31]

    Sjöberg, L.E., 2009. Solving Vening Meinesz-Moritz Inverse Problem in Isostasy. Geophys J. Int., 179(3), 1527–1536, doi: .

    • Crossref
    • Export Citation
  • [32]

    Sjöberg, L.E., 2013. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz–Moritz gravimetric inverse problem. Geophysical Journal International, 193(3), 1277–1282.

  • [33]

    Sjöberg, L.E. and Bagherbandi, M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophysica, 59(3), 502–525.

  • [34]

    Sjöberg, L.E., Bagherbandi, M., and Tenzer, R., 2015. On Gravity Inversion by No-Topography and Rigorous Isostatic Gravity Anomalies. Pure and Applied Geophysics, 1–12.

  • [35]

    Shapiro, N.M. and Ritzwoller, M.H., 2002. Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle. Geophys. J. Int., 151, 88–105.

  • [36]

    Suleimanov, A.K., Berzin, R.G., Zamozhnyaya, N.G., and Lipilin, A.V., 2007. Results of integrated geological-geophysical studies in the East European Craton (1EV geophysical transect). In: Models of the Earth’s crust and upper mantle after deep seismic profiling. Proceedings of the international scientific-practical seminar. Rosnedra, VSEGEI, St. Petersburg, VSEGEI Press, 215–223 (in Russian).

  • [37]

    Sutra, E. and Manatschal, G. 2012. How does the continental crust thin in a hyperextended rifted margin? Insights from the Iberia margin. Geology, 40, 139–142, doi: .

    • Crossref
    • Export Citation
  • [38]

    Tenzer, R. and Bagherbandi, M. 2012. Reformulation of the Vening Meinesz-Moritz inverse problem of isostasy for isostatic gravity disturbances. International Journal of Geosciences, 2012(3), 918–929, doi:.

    • Crossref
    • Export Citation
  • [39]

    Tenzer, R. and Chen, W. 2014. Expressions for the global gravimetric Moho modeling in spectral domain. Pure and Applied Geophysics, 171(8), 1877–1896.

  • [40]

    Tenzer, R., Chen, W., Tsoulis, D., Bagherbandi, M., Sjöberg, L.E, Novák, P, and Jin, S. 2015a. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surveys in Geophysics, 36(1), 139–165.

  • [41]

    Tenzer, R., Chen, W., and Jin, S., 2015b. Effect of Upper Mantle Density Structure on Moho Geometry. Pure and Applied Geophysics, 172(6), 1563–1583.

  • [42]

    Zolotov, E.E., Kostyuchenko, S.L., and Rakitov, V.A., 1998. Tomographic lithosphere sections in the ICAM VI Proceedings 9 East European Platform. In: Seismological model of the North European lithosphere: Barents Region. (Eds. F.P. Mitrofanov, N.V. Sharov). Apatity: KSC RAS. P. 1, 71–79 (in Russian).

Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Journal + Issues

This journal is a forum for research articles in the area of application of geodesy to engineering and other natural sciences. It publishes innovative contributions on sensor developments, multi-sensor systems and sensor data fusion focusing on the capture of georeferenced data. The scope covers various other topics related to applied geodesy, such as optical and microwave 3-D measurement techniques and other sensors for geotechnical measurements.