Mitigation of aflatoxin B1- and sodium arsenite-induced cytotoxicities in HUC-PC urinary bladder cells by curcumin and Khaya senegalensis

Jeremiah Olorunjuwon Olugbami 1 , 2 , 3 , Robert Damoiseaux 4 , 5 , Oyeronke Adunni Odunola 1 , and James Kazimierz Gimzewski 2 , 3 , 6
  • 1 Cancer Research and Molecular Biology (CRMB) Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, OY 200005, Nigeria
  • 2 Nano and Pico Characterisation (NPC) Laboratories, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
  • 3 Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
  • 4 Molecular Screening and Shared Resources (MSSR), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
  • 5 Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, CA 90095, USA
  • 6 International Center for Materials Nanoarchitectonics (MANA) Satellite, National Institute for Materials Science (NIMS), Tsukuba, Japan
Jeremiah Olorunjuwon Olugbami
  • Cancer Research and Molecular Biology (CRMB) Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, OY 200005, Nigeria
  • Nano and Pico Characterisation (NPC) Laboratories, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
  • Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Robert Damoiseaux
  • Corresponding author
  • Molecular Screening and Shared Resources (MSSR), California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
  • Department of Molecular and Medicinal Pharmacology, University of California, Los Angeles, CA 90095, USA
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Oyeronke Adunni Odunola
  • Cancer Research and Molecular Biology (CRMB) Laboratories, Department of Biochemistry, University of Ibadan, Ibadan, OY 200005, Nigeria
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and James Kazimierz Gimzewski
  • Nano and Pico Characterisation (NPC) Laboratories, California NanoSystems Institute (CNSI), University of California, Los Angeles, CA 90095, USA
  • Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
  • International Center for Materials Nanoarchitectonics (MANA) Satellite, National Institute for Materials Science (NIMS), Tsukuba, Japan
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Background

Concomitant exposure to environmental/occupational toxicants such as aflatoxin B1 (AFB1) and arsenic in some regions of the world has been well reported. Therefore, this calls for the assessment of the efficacy of agents such as phytochemicals, which are already known for their ethno-medicinal uses in prophylaxis/remediation. We investigated the possible cytotoxic bio-interactions between AFB1 and sodium arsenite (SA) in urinary bladder cells. We also assessed the cytoprotective effects of curcumin and the ethanol stem bark extract of Khaya senegalensis (K2S).

Methods

The cells were exposed to graded levels of AFB1, SA, curcumin, and K2S for 24, 48, and 72 h. Subsequently, using optimum toxic concentrations of AFB1 and SA, respectively, the influence of non-toxic levels of curcumin and/or K2S was tested on exposure of the cells to AFB1 and/or SA. Hoechst 33342/propidium iodide staining technique was used to determine the end-points due to cytotoxicity with changes in adenosine triphosphate (ATP) levels determined using Promega’s CellTiter-Glo luminescent assay.

Results

Co-treatment of the cells with AFB1 and SA resulted in synergy in cytotoxic effects. Cytotoxicity was reduced by 3.5- and 2.9-fold by pre-treatment of the cells with curcumin and K2S before treatment with AFB1, while post-treatment resulted in 1.1- and 2.6-fold reduction, respectively. Pre-exposure of the cells with curcumin and K2S before treatment with SA ameliorated cytotoxicity by 3.8- and 3.0-fold, but post-treatment caused a 1.2- and 1.3-fold reduction, respectively.

Conclusions

Pre-treatment of the cells with either curcumin or K2S exhibited cytoprotective effects by ameliorating AFB1- and SA-induced cytotoxicity with inferred tendencies to prevent carcinogenesis.

  • [1]

    Murta-Nascimento C, Schmitz-Dräger BJ, Zeegers MP, Steineck G, Kogevinas M, Real FX, et al. Epidemiology of urinary bladder cancer: from tumor development to patient’s death. World J Urol 2007;25:285–95.

    • Crossref
    • PubMed
    • Export Citation
  • [2]

    Bray F, Ferley J, Soerjomataram II, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394–424.

    • Crossref
    • Export Citation
  • [3]

    Rushing BR, Selim MI. Aflatoxin B1: a review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol 2019;124:81–100.

    • Crossref
    • PubMed
    • Export Citation
  • [4]

    Liu Y, Du M, Zhang G. Proapoptotic activity of aflatoxin B1 and sterigmatocystin in HepG2 cells. Toxicol Rep 2014;1:1076–86.

    • Crossref
    • PubMed
    • Export Citation
  • [5]

    National Research Council. Arsenic in drinking water. Washington, DC, USA: National Academy Press, 2000.

  • [6]

    Mithofer K, Sandy MS, Smith MT, Di Monte D. Mitochondrial poisons cause depletion of reduced glutathione in isolated hepatocytes. Arch Biochem Biophys 1992;295:132–6.

    • Crossref
    • PubMed
    • Export Citation
  • [7]

    Zhou Q, Xi S. A review on arsenic carcinogenesis: epidemiology, metabolism, genotoxicity and epigenetic changes. Regul Toxicol Pharmacol 2018;99:78–88.

    • Crossref
    • PubMed
    • Export Citation
  • [8]

    Malik P, Mukherjee TK. Structure-function elucidation of antioxidative and prooxidative activities of the polyphenolic compound, curcumin. Chin J Biol. 2014;(396708):1–8.

  • [9]

    Tuorkey MJ. Curcumin a potent cancer preventive agent: mechanisms of cancer cell killing. Interv Med Appl Sci 2014;6:139–46.

    • PubMed
    • Export Citation
  • [10]

    Olugbami JO, Damoiseaux R, France B, Gbadegesin MA, Stieg AZ, Sharma S, Atomic force microscopy correlates antimetastatic potentials of HepG2 cell line with its redox/energy status: Effects of curcumin and Khaya senegalensis. J Integr Med. 2017;15:214–30.

    • Crossref
    • PubMed
    • Export Citation
  • [11]

    Abdel-Daim MM, Abdou RH. Protective effects of diallyl sulfide and curcumin separately against thallium-induced toxicity in rats. Cell J 2015;17:379–88.

    • PubMed
    • Export Citation
  • [12]

    Corbi G, Conti V, Davinelli S, Scapagnini G, Filippelli A, Ferrara N. Dietary phytochemicals in neuroimmunoaging: a new therapeutic possibility for humans? Front Pharmacol 2016;7:364.

    • PubMed
    • Export Citation
  • [13]

    Zheng J, Cheng J, Zheng S, Feng Q, Xiao X. Curcumin, a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front Pharmacol 2018;9:472.

    • Crossref
    • PubMed
    • Export Citation
  • [14]

    Adesida GA, Adesogan EK, Okorie DA, Taylor DA, Styles BT. The limonoid chemistry of the genus Khaya (Meliaceae). Phytochemistry 1971;10:1845–53.

    • Crossref
    • Export Citation
  • [15]

    Nwosu C, Hassan S, Abubakar M, Ebbo AA. Anti-diarrhoeal and toxicological studies of leaf extract of Khaya senegalensis. J Pharmacol Toxicol 2012;7:1–10.

    • Crossref
    • Export Citation
  • [16]

    Kolawole O, Kolawole S, Ayankunle A, Olaniran A. Anti-hyperglycemic effect of Khaya senegalensis stem bark aqueous extract in Wistar rats. Eur J Med Chem 2012;2:66–73.

  • [17]

    Marius L, Rakiatou T, Noufou O, Kini F. In vitro antioxidant activity and phenolic contents of different fractions of ethanolic extract from Khaya senegalensis A. Juss. (Meliaceae) stem barks. Afr J Pharm Pharmacol 2016;10:501–7.

    • Crossref
    • Export Citation
  • [18]

    Olmo L, da Silva M, Fo E, Vieira P, Fernandes JB, Marsaioli JB, et al. Rearranged limonoids from Khaya senegalensis. Phytochemistry 1996;42:831–7.

    • Crossref
    • Export Citation
  • [19]

    Kubmarawa D, Khan M, Punah A, Hassan M. Phytochemical screening and antimicrobial efficacy of extracts from Khaya senegalensis against human pathogenic bacteria. Afr J Biotechnol 2008;7:23–5.

  • [20]

    Yuan C, Zhang Y, Tang G, Di Y, Cao M, Wang X, et al. Khayseneganins AH, limonoids from Khaya senegalensis. J Nat Prod 2013;76:327–33.

    • Crossref
    • Export Citation
  • [21]

    Aguoru C, Bashayi C, Ogbonna I. Phytochemical profile of stem bark extracts of Khaya senegalensis by gas chromatography-mass spectrometry (GC-MS) analysis. J Pharmacogn Phytother 2017;9:35–43.

    • Crossref
    • Export Citation
  • [22]

    Olugbami JO, Damoiseaux R, France B, Onibiyo EM, Gbadegesin MA, Sharma S, et al. A comparative assessment of antiproliferative properties of resveratrol and ethanol leaf extract of Anogeissus leiocarpus (DC) Guill and Perr against HepG2 hepatocarcinoma cells. BMC Complement Altern Med 2017;17:381–92.

    • Crossref
    • PubMed
    • Export Citation
  • [23]

    Lema C, Varela-Ramirez A, Aguilera RJ. Differential nuclear staining assay for high-throughput screening to identify cytotoxic compounds. Curr Cell Biochem 2011;1:1–14.

    • PubMed
    • Export Citation
  • [24]

    Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, et al. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 1999;59:597–601.

    • PubMed
    • Export Citation
  • [25]

    El-Agamy DS. Comparative effects of curcumin and resveratrol on aflatoxin B1-induced liver injury in rats. Arch Toxicol 2010;84:389–96.

    • Crossref
    • Export Citation
  • [26]

    Onu A, Saidu Y, Ladan MJ, Bilbis LS, Aliero AA, Sahabi SM. Effect of aqueous stem bark extract of Khaya senegalensis on some biochemical, haematological, and histopathological parameters of rats. J Toxicol 2013;2013:1–9.

    • Crossref
    • Export Citation
  • [27]

    Manson MM, Green JA. Effect of microsomally activated AFB1 on GGT activity in 3 rat liver cell lines. Br J Cancer 1982;45:945–52.

    • Crossref
    • PubMed
    • Export Citation
  • [28]

    Scaife JF. Aflatoxin B1: cytotoxic mode of action evaluated by mammalian cell cultures. Fed Eur Biochem Soc Lett 1971;12:143–7.

    • Crossref
    • Export Citation
  • [29]

    Qureshi H, Hamid SS, Ali SS, Anwar J, Siddiqui AA, Khan NA. Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med Mycol 2015;53:409–16.

    • Crossref
    • PubMed
    • Export Citation
  • [30]

    Yang X-J, Lu H-Y, Li Z-Y, Bian Q, Qiu LL, Li Z, et al. Cytochrome P450 2A13 mediates aflatoxin B1-induced cytotoxicity and apoptosis in human bronchial epithelial cells. Toxicology 2012;300:138–48.

    • Crossref
    • PubMed
    • Export Citation
  • [31]

    Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, et al. Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chem Res Toxicol 2011;24:1586–96.

    • Crossref
    • PubMed
    • Export Citation
  • [32]

    Komissarova EV, Saha SK, Rossman TG. Dead or dying: the importance of time in cytotoxicity assays using arsenite as an example. Toxicol Appl Pharmacol 2005;202:99–107.

    • Crossref
    • PubMed
    • Export Citation
  • [33]

    Graham-Evans B, Tchounwou PB, Cohly HHP. Cytotoxicity and proliferation studies with arsenic in established human cell lines: keratinocytes, melanocytes, dendritic cells, dermal fibroblasts, microvascular endothelial cells, monocytes and T-cells. Int J Mol Sci 2003;4:13–21.

    • Crossref
    • Export Citation
  • [34]

    Hernández-Zavala A, Córdova E, Del Razo LM, Cebrián ME, Garrido E. Effects of arsenite on cell cycle progression in a human bladder cancer cell line. Toxicology 2005;207:49–57.

    • Crossref
    • Export Citation
  • [35]

    Kao Y-T, Wu C-H, Wu S-Y, Lan SH, Liu HS, Tseng YS. Arsenic treatment increase Aurora-A overexpression through E2F1 activation in bladder cells. BMC Cancer 2017;17:277.

    • Crossref
    • PubMed
    • Export Citation
  • [36]

    Barchowsky A, Dudek EJ, Treadwell MD, Wetterhahn KE. Arsenic induces oxidant stress and NF-kappa B activation in cultured aortic endothelial cells. Free Radic Biol Med 1996;21:783–90.

    • Crossref
    • PubMed
    • Export Citation
  • [37]

    Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L. Aflatoxin B1 and M1: biological properties and their involvement in cancer development. Toxins (Basel). 2018;10(6):214–233.

    • Crossref
    • Export Citation
  • [38]

    Williams JH, Phillips TD, Jolly PE, Stiles JK, Jolly CM, Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am J Clin Nutr 2004;80:1106–22.

    • Crossref
    • PubMed
    • Export Citation
  • [39]

    Oyelami OA, Maxwell S, Adelusola KA, Aladekoma TA, Oyelese AO. Aflatoxins in the autopsy brain tissue of children in Nigeria. Mycopathologia 1995;132:35–8.

    • Crossref
    • Export Citation
  • [40]

    Hammami W, Fiori S, Al Thani R, Kali NA, Balmas V, Migheli Q, et al. Fungal and aflatoxin contamination of marketed spices. Food Control 2014;37:177–81.

    • Crossref
    • Export Citation
  • [41]

    Bbosa GS, Kitya D, Lubega A, et al. In: Guevara-Gonzalez RG, editor. Aflatoxins – recent advances and future prospects. Rijeka, Croatia: InTech Press, 2013:239–65.

  • [42]

    Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta 2012;1823:1767–77.

    • Crossref
    • PubMed
    • Export Citation
  • [43]

    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84.

    • Crossref
    • PubMed
    • Export Citation
  • [44]

    Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? Am Assoc Pharm Sci J 2009;11:495–510.

  • [45]

    Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 1997;8:470–81.

    • Crossref
    • PubMed
    • Export Citation
  • [46]

    Bogdanffy MS, Valentine R. Differentiating between local cytotoxicity, mitogenesis, and genotoxicity in carcinogen risk assessments: the case of vinyl acetate. Toxicol Lett 2003;140–141:83–98.

    • PubMed
    • Export Citation
  • [47]

    Styblo M, Del Razo L, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 2000;74:289–99.

    • Crossref
    • PubMed
    • Export Citation
  • [48]

    Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, et al. Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ Health Perspect 2002;110:331–6.

    • Crossref
    • PubMed
    • Export Citation
  • [49]

    Lynn S, Gurr J-R, Lai H-T, Jan KY. NADH oxidase activation is involved in arsenite-induced oxidative DNA damage in human vascular smooth muscle cells. Circ Res 2000;86:514–9.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Search