Effect of Persea americana (avocado) fruit extract on the level of expression of adiponectin and PPAR-γ in rats subjected to experimental hyperlipidemia and obesity

Monika Padmanabhan 1  and Geetha Arumugam 2
  • 1 Department of Biochemistry, Bharathi Women’s College – Affiliated to University of Madras, Chennai, Tamilnadu, India
  • 2 Department of Biochemistry, Bharathi Women’s College, Broadway, Chennai, Tamilnadu 600108, India
Monika Padmanabhan and Geetha Arumugam

Abstract

Background: Persea americana, commonly known as avocado, is traditionally consumed fruit which possesses body fat lowering capacity. Adiponectin plays an important role in regulating obesity. In this study, the effect of hydro-alcoholic fruit extract of P. americana (HAEPA) on the level of blood lipids, glutathione, lipid peroxidation products, adiponectin and peroxisome proliferator activated receptor (PPAR)-γ expressions was investigated in rats fed a high-fat diet (HFD).

Methods: Male Sprague Dawley rats were divided into four groups: groups 1 and 2 were fed normal rat chow (5% fat) and groups 3 and 4 were fed HFD (23% fat) for a period of 14 weeks. In addition, groups 2 and 4 rats were administered orally with 100 mg/kg body weight of HAEPA from third week. After 14 weeks, rats were sacrificed, and serum/plasma levels of total cholesterol, phospholipids, triglyceride, high-density lipoprotein (HDL), low-density lipoprotein (LDL) and adiponectin were determined. The mRNA expression of adiponectin, PPAR-γ and protein expression of PPAR-γ were also evaluated.

Results: The body mass index (BMI), total fat pad mass and adiposity index were significantly decreased in HAEPA co-administered rats than in HFD-fed rats. The levels of LDL and lipid peroxides were significantly higher in HFD group than in HFD+HAEPA group. Levels of reduced glutathione, adiponectin, mRNA expression of adiponectin, PPAR-γ and protein expression of PPAR-γ were found to be increased in HFD+HAEPA group than in HFD group. The hypolipidemic effect of HAEPA is also evidenced by the histological observations in liver, heart and adipose tissue.

Conclusions: The results indicate that HAEPA exhibits hypolipidemic activity probably by increasing the mRNA expression of adiponectin and PPAR-γ, which reduce the risk of hyperlipidemia and obesity.

  • 1.

    Barness LA, Opitz JM, Gilbert-Barness E. Obesity: genetic, molecular, and environmental aspects. Am J Med Genet A 2007;143:301634.

    • Google Scholar
    • Export Citation
  • 2.

    Grundy SM. Cholesterol and coronary heart disease: a new era. J Am Med Assoc 1986;256:284958.

  • 3.

    Biggerstaff KD, Wooten JS. Understanding lipoproteins as transporters of cholesterol and other lipids. Adv Physiol Educ 2004;28:1056.

    • Google Scholar
    • Export Citation
  • 4.

    Ahima RS, Flier JS. Adipose tissue as an endocrine organ. Trends Endocrinol Metab 2000;11:32732.

  • 5.

    Okamoto Y, Kihara S, Funahashi T, Matsuzawa Y, Libby AP. Adiponectin: a key adipocytokine in metabolic syndrome. Clin Sci 2006;110:26778.

    • Google Scholar
    • Export Citation
  • 6.

    Motoshima H, Wu X, Sinha M, Hardy E, Rosato EL, Barbot DJ, et al. Differential regulation of adiponectin secretion from cultured human omental and subcutaneous adipocytes: effects of insulin and rosiglitazone. J Clin Endocrinol Metab 2002;87:56627.

    • Google Scholar
    • Export Citation
  • 7.

    Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423:7629.

    • Google Scholar
    • Export Citation
  • 8.

    Wei J, Bhattacharyya S, Jain M, Varga J. Regulation of matrix remodeling by peroxisome proliferator-activated receptor-γ: a novel link between metabolism and fibrogenesis. Open Rheumatol J 2012;6:10315.

    • Google Scholar
    • Export Citation
  • 9.

    Hajer GR, Van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008;29:295971.

    • Google Scholar
    • Export Citation
  • 10.

    Spiegelman BM. PPAR-γ: adipogenic regulator and thiazolidinedione receptor. Diabetes 1998;47:50714.

  • 11.

    Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature 2000;405:4214.

  • 12.

    Speight TM. Avery’s drug treatment principles and practice of clinical pharmacology and therapeutics, 3rd ed. Auckland: ADIS Press, 1987:599.

    • Google Scholar
    • Export Citation
  • 13.

    Rainey C, Affleck M, Bretschger K, Alfin-Slater RB. The California avocado, a new look. Nutr Today 1994;29:23.

  • 14.

    D’Ambrosio SM, Han C, Pan L, Kinghorn AD, Ding H. Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochem Biophys Res Commun 2011;409:4659.

    • Google Scholar
    • Export Citation
  • 15.

    Mahadeva Rao US, Adinew B. Remnant B-cell stimulative and anti-oxidative effects of Persea americana fruit extract studied in rats introduced into streptozotocin-induced hyperglycemic state. Afr J Tradit Complement Altern Med 2011;8:21017.

    • Google Scholar
    • Export Citation
  • 16.

    Ding H, Chin YW, Kinghorn AD, D’Ambrosio SM. Chemopreventive characteristics of avocado fruit. Semin Cancer Biol 2007;17:38694.

    • Google Scholar
    • Export Citation
  • 17.

    Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Luvizotto RA, Nogueira CR, et al. A hypercaloric pellet-diet cycle induces obesity and co-morbidities in wistar rats. Araq Bras Endocrinol Metab 2008;52:96874.

    • Google Scholar
    • Export Citation
  • 18.

    Taylor BA, Phillips SJ. Detection of obesity QTLs on mouse chromosomes 1 and 7 by selective DNA pooling. Genomics 1996;34:38998.

    • Google Scholar
    • Export Citation
  • 19.

    William WN, Ceddia RB, Curi R. Leptin controls the fate of fatty acids in isolated rat white adipocytes. J Endocrinol 2002;175:73544.

    • Google Scholar
    • Export Citation
  • 20.

    Folch J, Lees M, Sloane SG. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 1957;226:497509.

    • Google Scholar
    • Export Citation
  • 21.

    Zak B, Dickenman RC, White EG, Burnett U, Cherney PJ. Rapid estimation of free and total cholesterol. Am J Clin Pathol 1954;24:130715.

    • Google Scholar
    • Export Citation
  • 22.

    Van Handel E, Zilversmit DB. Micromethod for the direct determination of serum triglycerides. J Lab Clin Med 1957;50:1527.

    • Google Scholar
    • Export Citation
  • 23.

    Miyazawa T. Determination of phospholipid hydroperoxides in human blood plasma by a chemiluminescence-HPLC assay. Free Radic Biol Med 1989;7:20917.

    • Google Scholar
    • Export Citation
  • 24.

    Kuchmak M, Hazlehurst JS, Olansky AS, Taylor L. Reference sera with graded levels of high density lipoprotein cholesterol. Clin Chim Acta 1984;144:23743.

    • Google Scholar
    • Export Citation
  • 25.

    Bairaktari ET, Seferiadis KI, Elisaf MS. Evaluation of methods for the measurement of low-density lipoprotein cholesterol. J Cardiovasc Pharmacol Ther 2005;10:4554.

    • Google Scholar
    • Export Citation
  • 26.

    Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 1990;46:42131.

    • Google Scholar
    • Export Citation
  • 27.

    Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochem Biophys Acta 1979;582:6778.

    • Google Scholar
    • Export Citation
  • 28.

    Shrestha S, Ehlers SJ, Lee JY, Fernandez ML, Koo SI. Dietary green tea extract lowers plasma and hepatic triglycerides and decreases the expression of sterol regulatory element-binding protein-1c mRNA and its responsive genes in fructose-fed, ovariectomized rats. J Nutr 2009;139:6405.

    • Google Scholar
    • Export Citation
  • 29.

    Nabel EG. Cardiovascular disease. N Engl J Med 2003;349:6072.

  • 30.

    Spady DK, Woollett LA, Dietschy JM. Regulation of plasma LDL-cholesterol levels by dietary cholesterol and fatty acids. Annu Rev Nutr 1993;13:35581.

    • Google Scholar
    • Export Citation
  • 31.

    Lu QY, Arteaga JR, Zhang Q, Huerta S, Go VL, Heber D. Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances. J Nutr Biochem 2005;16:2330.

    • Google Scholar
    • Export Citation
  • 32.

    Kris-Etherton PM. AHA science advisory. Monounsaturated fatty acids and risk of cardiovascular disease. America Kris Etherton PM. AHA Science Advisory. Monounsaturated fatty acids and risk of cardiovascular disease. American Heart Association Nutrition Committee. Circulation 1999;100:1253-58. Heart Association Nutrition Committee. Circulation 1999;100:12538.

    • Google Scholar
    • Export Citation
  • 33.

    Mohamed Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Dissord 1998;22:114558.

    • Google Scholar
    • Export Citation
  • 34.

    Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 1999;257:7983.

    • Google Scholar
    • Export Citation
  • 35.

    Iwashima Y, Katsuya T, Ishikawa K, Ouchi N, Ohishi M, Sugimoto K, et al. Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension 2004;43:131823.

    • Google Scholar
    • Export Citation
  • 36.

    Sharma PK, Bhansali A, Sialey R, Malhotra S, Pandhi P. Effects of pioglitazone and metformin on plasma adiponectin in newly detected type 2 diabetes mellitus. Clin Endocrinol 2006;65:7228.

    • Google Scholar
    • Export Citation
  • 37.

    He W, Barak Y, Hevener A, et al. Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci USA 2003;100:1571217.

    • Google Scholar
    • Export Citation
  • 38.

    Berger J, Moller DE. The mechanism of action of PPARs. Annu Rev Med 2002;53:40935.

  • 39.

    Joss-Moore LA, Wang Y, Campbell MS, Moore B, Yu X, Callaway CW, et al. Uteroplacental insufficiency increases visceral adiposity and visceral adipose PPARγ2 expression in male rat offspring prior to the onset of obesity. Early Hum Dev 2010;86:17985.

    • Google Scholar
    • Export Citation
  • 40.

    Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre AM, Saladin R, et al. The organization, promoter analysis, and expression of the human PPAR-gamma gene. J Biol Chem 1997;272:1877989.

    • Google Scholar
    • Export Citation
  • 41.

    Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;391:7982.

    • Google Scholar
    • Export Citation
  • 42.

    Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:24152.

    • Google Scholar
    • Export Citation
  • 43.

    Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998;93:22940.

    • Google Scholar
    • Export Citation
  • 44.

    Esposito LA, Melov S, Panov A, Cottrell BA, Cottrell WD. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 1999;96:48205.

    • Google Scholar
    • Export Citation
  • 45.

    Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003;52:165563.

    • Google Scholar
    • Export Citation
  • 46.

    Karuna R, Reddy SS, Baskar R, Saralakumari D. Antioxidant potential of aqueous extract of Phyllanthus amarus in rats. Indian J Pharmacol 2009;41:647.

    • Google Scholar
    • Export Citation
  • 47.

    Townsend DM, Tew KD, Tapiero H. The importance of glutathione in human disease. Biomed Pharmacother 2003;57:14555.

    • Google Scholar
    • Export Citation
  • 48.

    Carriere A, Carmona MC, Fernandez Y, Rigoulet M, Wenger RH, Penicaud L, et al. Mitochondrial reactive oxygen species control the transcription factor CHOP-10/GADD153 and adipocyte differentiation. J Biol Chem 2004;279:404629.

    • Google Scholar
    • Export Citation
  • 49.

    Mahadeva Rao US, Haque M. Insulin stimulative andanti-oxidative effects of Persea americana fruit extract on streptozotocin induced hyperglycemic rats. J Med Biol Sci 2011;4:110.

    • Google Scholar
    • Export Citation
  • 50.

    Willis RB, Lim JS, Greenfield H. Composition of Australian foods 31. Tropical and sub-tropical fruit. Food Technol Aust 1986;38:11823.

    • Google Scholar
    • Export Citation
  • 51.

    Bergh B. Nutritious value of avocado. Riverside, CA: California Avocado Society Book, 1992:12335.

  • 52.

    Deuster KC. Avocado is a rich source of beta-sitosterol. J Am Diet Assoc 2011;101:4045.

  • 53.

    Kruger M, Sayed M, Langenhoven ML, Holling F. Composition of South African foods: vegetables and fruit. Supplement to the MRC food composition tables 1991, 1st ed. Tygerberg: Medical Research Council, 1998.

    • Google Scholar
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Complementary and Integrative Medicine focuses on evidence concerning the efficacy and safety of complementary and alternative medical (CAM) whole systems, practices, interventions and natural health products, including herbal medicines.

Search