Inhibitory effects of Tiliacora triandra (Colebr.) Diels on cholesterol absorption

  • 1 Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
  • 2 Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao,, Phayao, Thailand
  • 3 School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway,, Selangor Darul Ehsan, Malaysia
  • 4 Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao,, Phayao, Thailand
Acharaporn DuangjaiORCID iD: https://orcid.org/0000-0002-5153-8738
  • Corresponding author
  • Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
  • Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao,, Phayao, Thailand
  • orcid.org/0000-0002-5153-8738
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Surasak SaokaewORCID iD: https://orcid.org/0000-0002-1382-0660
  • Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao,, Phayao, Thailand
  • School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway,, Selangor Darul Ehsan, Malaysia
  • Unit of Excellence on Herbal Medicine, School of Pharmaceutical Sciences, University of Phayao,, Phayao, Thailand
  • orcid.org/0000-0002-1382-0660
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Background

Natural supplements and herbal medicines have been attracted to use for managing elevated cholesterol levels. Tiliacora triandra (Colebr.) Diels (TT) or Yanang (in Thai) is commonly used as an ingredient in various types of Thai foods. In this study, we investigated the effect of methanolic TT leaf extract on cholesterol absorption by measuring the uptake and the efflux of cholesterol and cholesterol micellar solubility. In addition, we tested the effect of TT leaf extract on pancreatic lipase activity.

Methods

The uptake and efflux of cholesterol was determined by quantification of radioactivity in differentiated Caco-2 cells after treatment with radioactive cholesterol. Cholesterol mixed micelles were prepared for cholesterol uptake, efflux and solubility studies. The pancreatic lipase activity was determined using 4-methylumbelliferyl oleate as a substrate.

Results

Our finding showed that TT extract decreased the uptake of cholesterol by approximately 48% but did not affect the efflux of cholesterol. TT inhibited pancreatic lipase activity with the IC50 at 273.5 μg/mL and also decreased cholesterol micellar solubility.

Conclusions

These findings suggest that TT leaf extract seems to be a potential candidate as cholesterol-lowering agents.

  • [1]

    van der Wulp MYM, Verkade HJ, Groen AK. Regulation of cholesterol homeostasis. Mol Cell Endocrinol. 2013;368:1–16.

  • [2]

    Wang DQ. Regulation of intestinal cholesterol absorption. Annu Rev Physiol. 2007;69:221–48.

  • [3]

    Weingartner O, Lutjohann D, Bohm M, Laufs U. Relationship between cholesterol synthesis and intestinal absorption is associated with cardiovascular risk. Atherosclerosis. 2010;210:362–5.

  • [4]

    Barbagallo CM, Cefalu AB, Noto D, Averna MR. Role of nutraceuticals in hypolipidemic therapy. Front Cardiovasc Med. 2015;2:22.

  • [5]

    Jesch ED, Carr TP. Sitosterol reduces micellar cholesterol solubility in model bile. Nutr Res. 2006;26:579–84.

  • [6]

    Won SR, Kim SK, Kim YM, Lee PH, Ryu JH, Kim JW, et al. Licochalcone A: a lipase inhibitor from the roots of Glycyrrhiza uralensis. Food Res Int. 2007;40:1046–50.

  • [7]

    Boonsong P, Laohakunjit N, Kerdchoechuen O. Identification of polyphenolic compounds and colorants from Tiliacora triandra (Diels) leaves. Agricultural Sci J. 2009;40:13–6.

  • [8]

    Sureram S, Senadeera S, Hongmanee P, Mahidol C, Ruchirawat S, Kittakoop P. Antimycobacterial activity of bisbenzylisoquinoline alkaloids from Tiliacora triandra against multidrug-resistant isolates of Mycobacterium tuberculosis. Bioorg Med Chem Lett. 2012;22:2902–5.

  • [9]

    Prasitpuriprecha C, Damkliang A, Surintha P, Deelum W. Immunomodulating, antioxidant and antimicrobial activities of northeastern Thai edible plant and medicinal plant extracts. IJPS. 2009;5:99–107.

  • [10]

    Ikeyami F, Duangteraprecha S, Kurimura N, Fujii Y, Aburada M, Ruangrungsi N, et al. Chemical and biological studies on some Thai medicinal plants. J Sci Soc. 1990;16:25–31.

  • [11]

    Katisart T, Rattana S. Hypoglycemic activity of leaf extracts from Tiliacora triandra in normal and streptozotocin-induced diabetic rats. Phcog J. 2017;9:5.

  • [12]

    Phunchago N, Wattanathorn J, Chaisiwamongkol K. Tiliacora triandra, an anti-intoxication plant, improves memory impairment, neurodegeneration, cholinergic function, and oxidative stress in hippocampus of ethanol dependence rats. Oxid Med Cell Longev. 2015;Article ID 918426.

  • [13]

    Nanna U, Naowaboot J, Chularojmontri L. Effects of Tiliacora triandra leaf water extract in high-fat diet fed mice. J Med Assoc Thai. 2017;100:78.

  • [14]

    Yamanashi Y, Takada T, Suzuki H. Niemann-Pick C1-Like 1 overexpression facilitates ezetimibe-sensitive cholesterol and β-sitosterol uptake in Caco-2 cells. J Pharmacol Exp Ther. 2007;320:559–64.

  • [15]

    Tachibana S, Hirano M, HiraTa T, Matsuo M, Ikeda I, Ueda K, et al. Cholesterol and plant sterol efflux from cultured intestinal epithelial cells is mediated by ATP-Binding Cassette transporters. Biosci Biotechnol Biochem. 2007;71:1886–95.

  • [16]

    Kirana C, Rogers PF, Bennett LE, Abeywardena MY, Patten GS. Naturally derived micelles for rapid in vitro screening of potential cholesterol-lowering bioactivities. J Agric Food Chem. 2005;53:4623–7.

  • [17]

    Nakai M, Fukui Y, Asami S, Toyoda-Ono Y, Iwashita T, Shibata H, et al. Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro. J Agric Food Chem. 2005;53:4593–98.

  • [18]

    Cohn JS, Kamili A, Wat E, Chung RW, Tandy S. Dietary phospholipids and intestinal cholesterol absorption. Nutrients. 2010;2:116–27.

  • [19]

    Wang HH, Patel SB, Carey MC, Wang DQ. Quantifying anomalous intestinal sterol uptake, lymphatic transport, and biliary secretion in Abcg8(-/-) mice. Hepatology. 2007;45:998–1006.

  • [20]

    Sireeratawong S, Lertprasertsuke N, Srisawat U, Thuppia A, Ngamjariyawat A, Suwanlikhid N, et al. Acute and subchronic toxicity study of the water extract from Tiliacora triandra (Colebr.) Diels in rats. Songklanakarin J Sci Technol. 2008;30:611–9.

  • [21]

    Iqbal J, Hussain MM. Intestinal lipid absorption. Am J Physiology-Endocrinol Metabolism. 2009;296:E1183–94.

  • [22]

    Nassir F, Wilson B, Han X, Gross RW, Abumrad NA. CD36 is important for fatty acid and cholesterol uptake by the proximal but not distal intestine. J Biol Chem. 2007;282:19493–501.

  • [23]

    Altmann SW, Davis HR Jr, Yao X, Laverty M, Compton DS, Zhu LJ, et al. The identification of intestinal scavenger receptor class B, type I (SR-BI) by expression cloning and its role in cholesterol absorption. Biochimica et Biophysica Acta. 2002;1580:77–93.

  • [24]

    Yao SL, Xu Y, Zhang YY, Lu YH. Black rice and anthocyanins induce inhibition of cholesterol absorption in vitro. Food Funct. 2013;4:1602–8.

  • [25]

    Duangjai A, Limpeanchob N, Trisat K, Amornlerdpison D. Spirogyra neglecta inhibits the absorption and synthesis of cholesterol in vitro. IMR. 2016;5:301–8.

  • [26]

    Young SC, Hui DY. Pancreatic lipase/colipase-mediated triacylglycerol hydrolysis is required for cholesterol transport from lipid emulsions to intestinal cells. Biochem J. 1999;339:615–20.

  • [27]

    Huggins KW, Camarota LM, Howles PN, Hui DY. Pancreatic triglyceride lipase deficiency minimally affects dietary fat absorption but dramatically decreases dietary cholesterol absorption in mice. J Biol Chem. 2003;278:42899–905.

  • [28]

    Mittendorfer B, Ostlund RE, Patterson BW, Klein S. Orlistat inhibits dietary cholesterol absorption. Obes Res. 2001;9:599–604.

  • [29]

    Woollett LA, Wang Y, Buckley DD, Yao L, Chin S, Granholm N, et al. Micellar solubilisation of cholesterol is essential for absorption in humans. Gut. 2006;55:197–204.

  • [30]

    Nagaoka S, Miwa K, Eto M, Kuzuya Y, Hori G, Yamamoto K. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and Caco-2 cells. J Nutr. 1999;129:1725–30.

  • [31]

    Nagaoka S, Nakamura A, Shibata H, Kanamaru Y. Soystatin (VAWWMY), a novel bile acid-binding peptide, decreased micellar solubility and inhibited cholesterol absorption in rats. Biosci Biotechnol Biochem. 2010;74:1738–41.

  • [32]

    Ngamukote S, Makynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules. 2011;16:5054–61.

  • [33]

    Ikeda I, Yamahira T, Kato M, Ishikawa A. Black-tea polyphenols decrease micellar solubility of cholesterol in vitro and intestinal absorption of cholesterol in rats. J Agric Food Chem. 2010;58:8591–5.

  • [34]

    Tippayakul C, Pongsamart S, Suksomtip M. Lipid entrapment property of polysaccharide gel (PG) extracted from fruit-hulls of durian (Durio zibethinus Murr. Cv. Mon-Thong). Songklanakarin J Sci Technol. 2005;27:291–300.

  • [35]

    Singthong J, Ningsanond S, Cui SW. Extraction and physicochemical characterisation of polysaccharide gum from Yanang (Tiliacora triandra) leaves. Food Chem. 2009;114:1301–7.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Complementary and Integrative Medicine focuses on evidence concerning the efficacy and safety of complementary and alternative medical (CAM) whole systems, practices, interventions and natural health products, including herbal medicines.

Search