Groups satisfying the double chain condition on non-subnormal subgroups

Mattia Brescia 1
  • 1 Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Via Cintia, Monte S. Angelo, 80126, Napoli, Italy
Mattia Brescia
  • Corresponding author
  • Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Via Cintia, Monte S. Angelo, 80126, Napoli, Italy
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

If 𝜃 is a subgroup property, a group 𝐺 is said to satisfy the double chain condition on 𝜃-subgroups if it admits no infinite double sequences

<X-n<<X-1<X0<X1<<Xn<

consisting of 𝜃-subgroups. The structure of generalised radical groups satisfying the double chain condition on non-subnormal subgroups is described.

  • [1]

    M. Brescia and F. de Giovanni, Groups satisfying the double chain condition on subnormal subgroups, Ric. Mat. 65 (2016), no. 1, 255–261.

    • Crossref
    • Export Citation
  • [2]

    M. Brescia and F. de Giovanni, Groups satisfying the double chain condition on non-pronormal subgroups, Riv. Math. Univ. Parma (N. S.) 8 (2017), no. 2, 353–366.

  • [3]

    M. Brescia and A. Russo, Groups satisfying the double chain condition on abelian subgroups, Bull. Aust. Math. Soc. 99 (2019), no. 2, 212–218.

    • Crossref
    • Export Citation
  • [4]

    M. Brescia and A. Russo, Groups satisfying the double chain condition on non-abelian subgroups, J. Algebra Appl. 19 (2020), no. 8, Article ID 2050145.

  • [5]

    M. Contessa, On rings and modules with DICC, J. Algebra 101 (1986), no. 2, 489–496.

    • Crossref
    • Export Citation
  • [6]

    F. De Mari and F. de Giovanni, Double chain conditions for infinite groups, Ric. Mat. 54 (2005), no. 1, 59–70.

  • [7]

    S. Franciosi and F. de Giovanni, On groups with many subnormal subgroups, Note Mat. 13 (1993), no. 1, 99–105.

  • [8]

    S. Franciosi and F. de Giovanni, Groups satisfying the minimal condition on non-subnormal subgroups, Infinite Groups 1994, De Gruyter, Berlin (1996), 63–72.

  • [9]

    H. Heineken and L. A. Kurdachenko, Groups with subnormality for all subgroups that are not finitely generated, Ann. Mat. Pura Appl. (4) 169 (1995), 203–232.

    • Crossref
    • Export Citation
  • [10]

    L. A. Kurdachenko and H. Smith, Groups with the maximal condition on nonsubnormal subgroups, Boll. Unione Mat. Ital. B (7) 10 (1996), no. 2, 441–460.

  • [11]

    A. I. Mal’cev, On certain classes of infinite soluble groups, Mat. Sb. 28 (1951), 567–588.

  • [12]

    W. Möhres, Torsionsfreie Gruppen, deren Untergruppen alle subnormal sind, Math. Ann. 284 (1989), no. 2, 245–249.

    • Crossref
    • Export Citation
  • [13]

    W. Möhres, Auflösbarkeit von Gruppen, deren Untergruppen alle subnormal sind, Arch. Math. (Basel) 54 (1990), no. 3, 232–235.

    • Crossref
    • Export Citation
  • [14]

    D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups. Part 2, Ergeb. Math. Grenzgeb. (3) 63, Springer, New York, 1972.

  • [15]

    D. J. S. Robinson, A Course in the Theory of Groups, Grad. Texts in Math. 80, Springer, New York, 1982.

  • [16]

    O. Schmidt, Infinite soluble groups, Rec. Math. [Mat. Sbornik] N. S. 17(59) (1945), 145–162.

  • [17]

    T. S. Shores, A chain condition for groups, Rocky Mountain J. Math. 3 (1973), 83–89.

    • Crossref
    • Export Citation
  • [18]

    D. I. Zaĭcev, On solvable subgroups of locally solvable groups, Soviet Math. Dokl. 15 (1974), 342–345.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Group Theory is devoted to the publication of original research articles in all aspects of group theory. Articles concerning applications of group theory and articles from research areas which have a significant impact on group theory will also be considered.

Search