Irreducible representations of Braid group 𝐵𝑛 of dimension 𝑛 + 1

Inna Sysoeva 1
  • 1 Department of Mathematical Sciences, Binghamton University, NY 13902, Binghamton, USA
Inna Sysoeva
  • Corresponding author
  • Department of Mathematical Sciences, Binghamton University, Binghamton, NY 13902, USA
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

We prove that there are no irreducible representations of Bn of dimension n+1 for n10.

  • [1]

    W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Semin. Univ. Hamburg 11 (1935), no. 1, 179–186.

    • Crossref
    • Export Citation
  • [2]

    W.-L. Chow, On the algebraical braid group, Ann. of Math. (2) 49 (1948), 654–658.

    • Crossref
    • Export Citation
  • [3]

    E. Formanek, Braid group representations of low degree, Proc. Lond. Math. Soc. (3) 73 (1996), no. 2, 279–322.

  • [4]

    E. Formanek, W. Lee, I. Sysoeva and M. Vazirani, The irreducible complex representations of the braid group on 𝑛 strings of degree ≤𝑛, J. Algebra Appl. 2 (2003), no. 3, 317–333.

    • Crossref
    • Export Citation
  • [5]

    F. A. Garside, The braid group and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235–254.

    • Crossref
    • Export Citation
  • [6]

    V. F. R. Jones, Braid groups, Hecke algebras and type II 1 {\rm II}_{1} factors, Geometric Methods in Operator Algebras (Kyoto 1983), Pitman Res. Notes Math. Ser. 123, Longman Scientific Technical, Harlow (1986), 242–273.

  • [7]

    V. F. R. Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. (2) 126 (1987), no. 2, 335–388.

    • Crossref
    • Export Citation
  • [8]

    M. Larsen and E. Rowell, Unitary braid representations with finite image, Algebr. Geom. Topol. 8 (2008), no. 4, 2063–2079.

    • Crossref
    • Export Citation
  • [9]

    R. J. Lawrence, Homological representations of the Hecke algebra, Comm. Math. Phys. 135 (1990), no. 1, 141–191.

    • Crossref
    • Export Citation
  • [10]

    W. Lee, Representations of the braid group B 4 B_{4}, J. Korean Math. Soc. 34 (1997), no. 3, 673–693.

  • [11]

    I. Sysoeva, Dimension 𝑛 representations of the braid group on 𝑛 strings, J. Algebra 243 (2001), no. 2, 518–538.

    • Crossref
    • Export Citation
  • [12]

    D.-M. Tong, S.-D. Yang and Z.-Q. Ma, A new class of representations of braid groups, Comm. Theoret. Phys. 26 (1996), no. 4, 483–486.

    • Crossref
    • Export Citation
  • [13]

    M. G. Zinno, On Krammer’s representation of the braid group, Math. Ann. 321 (2001), no. 1, 197–211.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Group Theory is devoted to the publication of original research articles in all aspects of group theory. Articles concerning applications of group theory and articles from research areas which have a significant impact on group theory will also be considered.

Search