Pitfalls of Exergy Analysis

Petr Vágner 1 , Michal Pavelka 2 , and František Maršík 3
  • 1 Research Centre, New Technologies, University of West Bohemia, Univerzitní – 8, 306 14 Pilsen, Czech Republic; Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague, Czech Republic
  • 2 Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Sokolovská 83, 186 75 Prague, Czech Republic; University of Chemistry and Technology Prague, Department of Chemical Engineering, Technická 5, 16628 Prague 6, Czech Republic
  • 3 Research Centre, New Technologies, University of West Bohemia, Univerzitní – 8, 306 14 Pilsen, Czech Republic
Petr Vágner, Michal Pavelka and František Maršík


The well-known Gouy–Stodola theorem states that a device produces maximum useful power when working reversibly, that is with no entropy production inside the device. This statement then leads to a method of thermodynamic optimization based on entropy production minimization. Exergy destruction (difference between exergy of fuel and exhausts) is also given by entropy production inside the device. Therefore, assessing efficiency of a device by exergy analysis is also based on the Gouy–Stodola theorem. However, assumptions that had led to the Gouy–Stodola theorem are not satisfied in several optimization scenarios, e.g. non-isothermal steady-state fuel cells, where both entropy production minimization and exergy analysis should be used with caution. We demonstrate, using non-equilibrium thermodynamics, a few cases where entropy production minimization and exergy analysis should not be applied.

  • [1] G. Gouy. Sur l’énergie utilizable, J. Phys. 8 (1889), 501–518.

  • [2] A. Stodola. Die Kreisprozesse der Gasmaschine, Zeitschrift d. Ver. d. Ingenieure, 1898.

  • [3] A. Bejan. Entropy generation minimization: The new thermodynamics of finite size devices and finite time processes, J. Appl. Phys. 79 (1996), no. 3, 1191–1218.

    • Crossref
    • Export Citation
  • [4] A. Sciacovelli. Thermodynamic optimization of a monolithic-type solid oxide fuel cell, Int. J. Thermodyn. 13 (2010), no. 3, 95–103.

  • [5] J. Meixner and H. G. Reik. Thermodynamik der Irreversible Prozesse, in Handbuch der Physik, Volume 3/II. Springer, Berlin Heidelberg New York, 1959.

  • [6] S. R. de Groot and P. Mazur. Non-equilibrium Thermodynamics. Dover Publications, New York, 1984.

  • [7] S. Kjelstrup and D. Bedeaux. Non-equilibrium Thermodynamics of Heterogeneous Systems. Series on Advances in Statistical Mechanics. World Scientific Publishing Co, Pte, Ltd. 5 Toh Tuck Link, Singapore, 2008.

  • [8] S. Kjelstrup, D. Bedeaux and E. Johannessen. Non-equilibrium Thermodynamics for Engineers. Science and culture series (Singapore): Physics. World Scientific, 2010.

  • [9] K. H. Hoffmann, J. M. Burzler and S. Schubert. Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), no. 4, 311–355.

  • [10] S. Sieniutycz and M. R. von Spakovsky. Finite time generalization of thermal exergy, Energy Convers. Manage. 39 (1998), no. 14, 1423 – 1447.

    • Crossref
    • Export Citation
  • [11] K. H. Hoffmann, J. Burzler, A. Fischer, M. Schaller and S. Schubert. Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn. 28 (2003), no. 3, 233–268.

  • [12] F. L. Curzon and B. Ahlborn. Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975), 22–24.

    • Crossref
    • Export Citation
  • [13] I. I. Novikov. The efficiency of atomic power stations, J. Nucl. Energy II 7 (1985), 125. [Atomnaya Energiya 3, 409 (1957)].

  • [14] P. Salamon, K. H. Hoffmann, S. Schubert, R. S. Berry and B. Andresen. What conditions make minimum entropy production equivalent to maximum power production? J. Non-Equilib. Thermodyn 26 (2001), 73–83.

  • [15] M. Pavelka and F. Maší. Detailed thermodynamic analysis of polymer electrolyte membrane fuel cell efficiency, Int. J. Hydrogen Energy 38 (2013), no. 17, 7102–7113.

  • [16] M. Pavelka, V. Klika, P. Vágner and F. Maršík. Generalization of exergy analysis. Appl. Energy 137 (2015), 158–172.

  • [17] M.H. Arshad, Ramazan Kahraman, A. Z. Sahin and R. Ben-Mansour. Second lawanalysis of compressible flow through a diffuser subjected to constant heat flux at wall, Energy Convers. Manage. 51 (2010), 2808–2815.

  • [18] F. A. Al-Sulaiman, G. Prakash Narayan and J. H. Lienhard V. Exergy analysis of a high-temperature-steam-driven, varied-pressure, humidification-dehumidification system coupled with reverse osmosis, Appl. Energy 103 (2013), 552–561.

  • [19] F. Gutiérrez and F. Méndez. Entropy generation minimization for the thermal decomposition of methane gas in hydrogen using genetic algorithms, Energy Convers. Manage. 55 (2012), 1–13.

    • Crossref
    • Export Citation
  • [20] M. Ishida, D. Zheng, and T. Akehata. Evaluation of a chemical-looping-combustion power-generation system by graphic exergy analysis, Energy 12 (Feb 1987), no. 2, 147–154.

    • Crossref
    • Export Citation
  • [21] A. Sciacovelli and V. Verda. Second-law design of a latent heat thermal energy storage with branched fins, Int. J. Numer. Methods Heat Fluid Flow 26 (2016), no. 2, 489–503.

    • Crossref
    • Export Citation
  • [22] L. D. Landau and E.M. Lifshitz. Course of theoretical physics-Pergamon International Library of Science, Technology, Engineering and Social Studies. Statistical physics. Pt. 1. Oxford: Pergamon Press, and Reading: Addison-Wesley, c1969, 2nd rev.-enlarg. ed. 1 (1969).

  • [23] M. Pavelka, F. Maršík and V. Klika. Consistent theory of mixtures on different levels of description, Int. J. Eng. Sci. 78 (2014), 192–217.

    • Crossref
    • Export Citation
  • [24] M. Pavelka, F. Wandschneider and P. Mazur. Thermodynamic derivation of open circuit voltage in vanadium redox flow batteries. J. Power Sources 293 (2015), 400–408.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
Log in
Already have access? Please log in.

Log in with your institution

Journal + Issues