The deal.II Library, Version 8.4

Wolfgang Bangerth 1 , Denis Davydov 2 , Timo Heister 3 , Luca Heltai 4 , Guido Kanschat 5 , Martin Kronbichler 6 , Matthias Maier 7 , Bruno Turcksin 1  and David Wells 8
  • 1 Department of Mathematics, Texas A&M University, College Station, TX 77843, United States of America
  • 2 Chair of Applied Mechanics, University of Erlangen-Nuremberg, Egerlandstr. 5, 91058 Erlangen, Germany
  • 3 Timo Heister: Mathematical Sciences, 0-110 Martin Hall. Clemson University. Clemson, SC 29634, United States of America
  • 4 SISSA — International School for Advanced Studies, Via Bonomea 265, 34136 Trieste, Italy
  • 5 Interdisciplinary Center for Scientific Computing (IWR), Universität Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
  • 6 Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
  • 7 School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church Street SE, Minneapolis, MN 55455, United States of America
  • 8 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
Wolfgang Bangerth, Denis Davydov, Timo Heister, Luca Heltai, Guido Kanschat, Martin Kronbichler, Matthias Maier, Bruno Turcksin and David Wells

Abstract

This paper provides an overview of the new features of the finite element library deal.II version 8.4.

  • [1]

    P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent, A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM J. Matrix Anal. Appl. 23 (2001), 15-41.

    • Crossref
    • Export Citation
  • [2]

    P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet, Hybrid scheduling for the parallel solution of linear systems, Parallel Computing 32 (2006), 136-156.

    • Crossref
    • Export Citation
  • [3]

    P.R. Amestoy, I.S. Duff and J.-Y. L’Excellent, Multifrontal parallel distributed symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg. 184 (2000), 501-520.

    • Crossref
    • Export Citation
  • [4]

    S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman Mclnnes, K. Rupp, B. F. Smith, and H. Zhang, PETSc Users Manual, Argonne National Laboratory, Report No. ANL-95/11 - Revision 3.5, 2014.

  • [5]

    S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman Mclnnes, K. Rupp, B. F. Smith, and H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc, 2014.

  • [6]

    W. Bangerth, C. Burstedde, T. Heister and M. Kronbichler, Algorithms and data structures for massively parallel generic adaptive finite element codes, ACM Trans. Math. Software 38 (2011), 14/1-28.

    • Crossref
    • Export Citation
  • [7]

    W. Bangerth, R. Hartmann, and G. Kanschat, deal.II — a general purpose object oriented finite element library, ACM Trans. Math. Software 33 (2007).

  • [8]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, and B. Turcksin, The deal.II Library, Version 8.3, Archive of Numer. Software 4 (2016), 1-11.

  • [9]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young, The deal.II Library, Version 8.0, arXiv preprint http://arxiv.org/abs/1312.2266v3 (2013).

  • [10]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young, The deal.II Library, Version 8.1, arXiv preprint http://arxiv.org/abs/1312.2266v4 (2013).

  • [11]

    W. Bangerth, T. Heister, L. Heltai, G. Kanschat, M. Kronbichler, M. Maier, B. Turcksin, and T. D. Young, The deal.II Library, Version 8.2, Archive of Numer. Software 3 (2015).

  • [12]

    W. Bangerth and G. Kanschat, Concepts for Object-Oriented Finite Element Software - the deal.II library, SFB 359, Preprint No. 1999-43, Heidelberg, 1999.

  • [13]

    W. Bangerth and O. Kayser-Herold, Data structures and requirements for hp finite element software, ACM Trans. Math. Software 36 (2009), 4/1-4/31.

  • [14]

    C. Burstedde, L. C. Wilcox, and O. Ghattas, p4est: Scalable algorithms for parallel adaptive mesh refinement on forests of octrees, SIAM J. Sci. Comput. 33 (2011), 1103-1133.

    • Crossref
    • Export Citation
  • [15]

    T. A. Davis, Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method, ACM Trans. Math. Software 30 (2004), 196-199.

    • Crossref
    • Export Citation
  • [16]

    A. DeSimone, L. Heltai, and C. Manigrasso, Tools for the Solution of PDEs Defined on Curved Manifolds with deal.II, SISSA, Report No. 42/2009/M, 2009.

  • [17]

    L. Heltai and A. Mola, Towards the Integration of CAD and FEM Using Open Source Libraries: a Collection of deal.II Manifold Wrappers for the OpenCASCADE Library, SISSA, Report, 2015, Submitted.

  • [18]

    V. Hernandez, J. E. Roman, and V. Vidal, SLEPc: A Scalable and Flexible Toolkit for the Solution of Eigenvalue Problems, ACM Trans. Math. Software 31 (2005), 351-362.

    • Crossref
    • Export Citation
  • [19]

    M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams, and K. S. Stanley, An overview of the Trilinos project, ACM Trans. Math. Software 31 (2005), 397-423.

    • Crossref
    • Export Citation
  • [20]

    M. A. Heroux et al., Trilinos web page, 2014, http://trilinos.sandia.gov.

  • [21]

    B. Janssen and G. Kanschat, Adaptive multilevel methods with local smoothing for H1- and Hcurl-conforming high order finite element methods, SIAM J. Sci. Comput. 33 (2011), 2095-2114.

    • Crossref
    • Export Citation
  • [22]

    G. Kanschat, Multi-level methods for discontinuous Galerkin FEM on locally refined meshes, Comput. & Struct. 82 (2004), 2437-2445.

    • Crossref
    • Export Citation
  • [23]

    G. Karypis and V. Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput. 20 (1998), 359-392.

    • Crossref
    • Export Citation
  • [24]

    M. Kronbichler and K. Kormann, A generic interface for parallel cell-based finite element operator application, Comput. Fluids 63 (2012), 135-147.

    • Crossref
    • Export Citation
  • [25]

    R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, SIAM, Philadelphia, 1998.

  • [26]

    List of Changes, https://www.dealii.org/8.4.0/doxygen/deal.II/changes_between_8_3_and_8_4.html.

  • [27]

    Matthias Maier, Mauro Bardelloni, and Luca Heltai, LinearOperator - a generic, high-level expression syntax for linear algebra, Computers Math. Appl. (2016), To appear.

  • [28]

    Matthias Maier, Mauro Bardelloni, and Luca Heltai, LinearOperator Benchmarks, Version 1.0.0, March 2016.

  • [29]

    MUMPS: a MUltifrontal Massively Parallel sparse direct Solver, http://graal.ens-lyon.fr/MUMPS/.

  • [30]

    muparser: Fast Math Parser Library, http://muparser.beltoforion.de/.

  • [31]

    OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation, http://www.opencascade.org/.

  • [32]

    J. Reinders, Intel Threading Building Blocks, O’Reilly, 2007.

  • [33]

    R. Rew and G. Davis, NetCDF: an interface for scientific data access, Computer Graph. Appl., IEEE 10 (1990), 76-82.

    • Crossref
    • Export Citation
  • [34]

    The HDF Group, Hierarchical Data Format, version 5, 1997-NNNN, http://www.hdfgroup.org/HDF5/.

  • [35]

    B. Turcksin, M. Kronbichler, and W. Bangerth, WorkStream - a design pattern for multicore-enabled finite element computations, ACM Trans. Math. Software (2016), (accepted).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Numerical Mathematics contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing.

Search