BCH Codes for Coherent Star DQAM Systems with Laser Phase Noise

Miu Yoong Leong 1 , Knud J. Larsen 2 , Gunnar Jacobsen 1 , Darko Zibar 2 , Sergey Sergeyev 3 ,  and Sergei Popov 4
  • 1 Acreo Swedish ICT, 164 25 Stockholm and KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
  • 2 Technical University of Denmark (DTU), 2800, Kgs. Lyngby, Denmark
  • 3 Aston University, B4 7ET, Birmingham, UK
  • 4 KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
Miu Yoong Leong
  • Corresponding author
  • Acreo Swedish ICT, 164 25 Stockholm and KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Knud J. Larsen, Gunnar Jacobsen, Darko Zibar, Sergey Sergeyev and Sergei Popov

Abstract

Coherent optical systems have relatively high laser phase noise, which affects the performance of forward error correction (FEC) codes. In this paper, we propose a method for selecting Bose–Chaudhuri–Hocquenghem (BCH) codes for coherent systems with star-shaped constellations and M-ary differential quadrature amplitude modulation (DQAM). Our method supports constellations of any order M which is a power of 2, and includes differential M-ary phase shift keying as a special case. Our approach is straightforward, requiring only short pre-FEC simulations to parameterize a statistical model, based on which we select codes analytically. It is applicable to pre-FEC bit error rates (BERs) of around 10−3. We evaluate the accuracy of our approach using numerical simulations. For a target post-FEC BER of 10−5, codes selected with our method yield BERs within 2× target. Lastly, we extend our method to systems with interleaving, which enables us to use codes with lower overhead.

  • 1.

    Chang F, Onohara K, Mizuochi T. Forward error correction for 100 G transport networks. IEEE Commun Mag 2010 Mar;48(3):S48–55.

    • Crossref
    • Export Citation
  • 2.

    Leven A, Schmalen L. Status and recent advances on forward error correction technologies for lightwave systems. In: Proc. ECOC; 2013. We.2.C.1. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6647610.

    • Crossref
    • Export Citation
  • 3.

    Lin S, Costello DJ. Error control coding, 2nd ed. New Jersey, USA: Prentice Hall, 2004.

  • 4.

    Pfau T. Carrier recovery algorithms and real-time DSP implementation for coherent receivers. In: Proc. OFC; 2014. W4K.1. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6887207.

    • Crossref
    • Export Citation
  • 5.

    Taylor MG. Phase estimation methods for optical coherent detection using digital signal processing. J Lightwave Technol 2009 Apr;27(7):901–14.

    • Crossref
    • Export Citation
  • 6.

    Schmalen L. A low-complexity LDPC coding scheme for channels with phase slips. J Lightwave Technol 2015 Apr;33(7):1319–25.

    • Crossref
    • Export Citation
  • 7.

    Koike-Akino T, Kojima K, Millar D, et al. Cycle slip-mitigating turbo demodulation in LDPC-coded coherent optical communications. In: Proc. OFC; 2014. M3A.3. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6886573.

    • Crossref
    • Export Citation
  • 8.

    Yu F, Stojanovic N, Hauske FN, et al. Soft-decision LDPC turbo decoding for DQPSK modulation in coherent optical receivers. In: Proc. ECOC; 2011. We.10.P1.70. http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6066139.

  • 9.

    Leong MY, Larsen KJ, Jacobsen G, Popov S, Zibar D, Sergeyev S. Dimensioning BCH codes for coherent DQPSK systems with laser phase noise and cycle slips. J Lightwave Technol 2014 Nov;32(21):4048–52.

    • Crossref
    • Export Citation
  • 10.

    Leong MY, Larsen KJ, Jacobsen G, Popov S, Zibar D, Sergeyev S. Interleavers and BCH codes for coherent DQPSK systems with laser phase noise. IEEE Photon Technol Lett 2015 Apr;27(7):685–8.

    • Crossref
    • Export Citation
  • 11.

    Beppu S, Kasai K, Yoshida M, Nakazawa M. 2048 QAM (66 Gbit/s) single-carrier coherent optical transmission over 150 km with a potential SE of 15.3 bit/s/Hz. Opt Express 2015 Feb;23(4):4960–9.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Sano A, Kobayashi T, Yamanaka S, et al. 102.3-Tb/s (224 × 548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone. In: Proc. optical fiber communication and the national fiber optic engineers conference (OFC/NFOEC); 2012. PDP5C.3.

    • Crossref
    • Export Citation
  • 13.

    Qian D, Huang MF, Ip E, et al. 101.7-Tb/s (370 × 294-Gb/s) PDM-128QAM-OFDM transmission over 3 × 55-km SSMF using pilot-based phase noise mitigation. In: Proc. optical fiber communication and the national fiber optic engineers conference (OFC/NFOEC); 2011. Th.3.C.1.

    • Crossref
    • Export Citation
  • 14.

    Zafra SO, Pang X, Jacobsen G, Popov S, Sergeyev S. Phase noise tolerance study in coherent optical circular QAM transmissions with Viterbi-Viterbi carrier phase estimation. Opt Express 2014 Dec;22(25):30579–85.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Webb WT, Hanzo L, Steele R. Bandwidth efficient QAM schemes for Rayleigh fading channels. IEEE Proc Commun Speech Vision, 1991 Jun;138(3):169–75.

    • Crossref
    • Export Citation
  • 16.

    Webb WT. QAM: the modulation scheme for future mobile radio communications? Electron Commun Eng J 1992 Aug;4(4):167–76.

    • Crossref
    • Export Citation
  • 17.

    Adachi F, Sawahashi M. Performance analysis of various 16 level modulation schemes under Rayleigh fading. Electron Lett 1992 Aug;28(17):1579–81.

    • Crossref
    • Export Citation
  • 18.

    Dong X, Beaulieu NC, Wittke PH. Error probabilities of two-dimensional M-ary signaling in fading. IEEE Trans Commun 1999 Mar;47(3):352–5.

    • Crossref
    • Export Citation
  • 19.

    Ishibashi K, Shin WY, Ochiai H, Tarokh VA. Peak power efficient cooperative diversity using star-QAM with coherent/noncoherent detection. IEEE Trans Wireless Commun 2013 May;12(5):2137–47.

    • Crossref
    • Export Citation
  • 20.

    Seimetz M. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. In: Proc. optical fiber communication conference and exposition and the national fiber optic engineers conference (OFC/NFOEC); 2008. OTuM2.

    • Crossref
    • Export Citation
  • 21.

    Digital Video Broadcasting (DVB). Second generation framing structure, channel coding and modulation systems for broadcasting, interactive services, news gathering and other broadband satellite applications; Part 2: DVB-S2 extensions (DVB-S2X); 2014. Draft ETSI EN 302 307–2v1.1.1.

  • 22.

    Viterbi A, Viterbi A. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans Inf Theory 1983 Jul;IT–29(4):543–51.

  • 23.

    Weber WJIII. Differential encoding for multiple amplitude and phase shift keying systems. IEEE Trans Commun 1978 Mar;26(3):385–91.

    • Crossref
    • Export Citation
  • 24.

    Dolinar S, Divsalar D. Weight distributions for turbo codes using random and nonrandom permutations. TDA progress report 42–122, 1995 Aug.

  • 25.

    Takeshita OY. Permutation polynomial interleavers: an algebraic-geometric perspective. IEEE Trans Inf Theory 2007 Jun;53(6):2116–32.

    • Crossref
    • Export Citation
  • 26.

    2015. Available at: www.vpiphotonics.com.

  • 27.

    Leong MY, Larsen KJ, Jacobsen G, Popov S, Zibar D, Sergeyev S. Novel BCH code design for mitigation of phase noise induced cycle slips in DQPSK systems. In: Proc. CLEO; 2014. STu3J.6.

    • Crossref
    • Export Citation
  • 28.

    Proakis JG. Digital communications, 4th ed. New York, USA: McGraw-Hill, 2000.

  • 29.

    Craig JW. A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations. In: Military communications conference (MILCOM), IEEE. vol. 2; 1991: p. 571–575.

  • 30.

    Pfau T, Liu X, Chandrasekhar S. Optimization of 16-ary Quadrature Amplitude Modulation constellations for phase noise impaired channels. In: Optical Communication (ECOC), 2011 37th European Conference and Exhibition on; 2011. p. 1–3.

    • Crossref
    • Export Citation
  • 31.

    Krishnan R, Graell i Amat A, Eriksson T, Colavolpe G. Constellation optimization in the presence of strong phase noise. IEEE Trans Commun 2013 Dec;61(12):5056–66.

    • Crossref
    • Export Citation
  • 32.

    Gordon JP, Mollenauer LF. Phase noise in photonic communications systems using linear amplifiers. Opt Lett 1990 Dec;15(23):1351–3.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Xu T, Jacobsen G, Popov S, Li J, Friberg AT, Zhang Y. Analytical estimation of phase noise influence in coherent transmission system with digital dispersion equalization. Opt Express 2011 Apr;19(8):7756–68.

    • Crossref
    • PubMed
    • Export Citation
  • 34.

    Jacobsen G, Xu T, Popov S, Li J, Friberg AT, Zhang Y. Receiver implemented RF pilot tone phase noise mitigation in coherent optical nPSK and nQAM systems. Opt Express 2011 Jul;19(15):14487–94.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

This is the journal for all scientists working in optical communications. JOC was the first international publication covering all fields of optical communications with guided waves. It is the aim of the journal to serve all scientists engaged in optical communications as a comprehensive journal tailored to their needs and as a forum for their publications. The journal focuses on the main fields in optical communications.

Search