Application of Molodensky's Method for Precise Determination of Geoid in Iran

Makan Abdollahzadeh and Mehdi Alamdari 2
  • 1 Division of Geodesy and Geoinformatics, Royal Institute of Technology, Stockholm, Sweden
  • 2 Faculty of Geodesy and Geomatics Engineering, K.N. Toosi University of Technology, Tehran, Iran

Application of Molodensky's Method for Precise Determination of Geoid in Iran

Determination of the geoid with a high accuracy is a challenging task among geodesists. Its precise determination is usually carried out by combining a global geopotential model with terrestrial gravity anomalies measured in the region of interest along with some topographic information. In this paper, Molodensky's approach is used for precise determination of height anomaly. To do this, optimum combination of global geopotential models with the validated terrestrial surface gravity anomalies and some deterministic modification schemes are investigated. Special attention is paid on the strict modelling of the geoidal height and height anomaly difference. The accuracy of the determined geoid is tested on the 513 points of Iranian height network the geoidal height of which are determined by the GPS observations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Andersen B., Knudsen P., Berry P., 2010, The DNSC08GRA global marine gravity field from double retracked satellite altimetry, J. Geod., 84, 191-99.

  • Ellmann A., Vaníček P., 2007, UNP application of Stokes-Helmert's approach to geoid computation, J. Geodyn., 43, 200-213.

  • Featherstone W.E., Evans J.D., Olliver J.G., 1998, A Meisslmodified Vaníček and Kleusberg kernel to reduce the truncation error in gravimetric geoid computations. J. Geod., 72, 154-160.

  • Forsberg R., 1998, The use of spectral techniques in gravity field modelling: Trends and perspectives. Phys. Chem. Earth, 23, 31-39.

  • Flury J., Rummel R., 2009, On the geoid-quasigeoid separation in mountain areas, J. Geod., 83, 829-847.

  • Förste C., et al., 2008, A new global combined high-resolution GRACE-based gravity field model of the GFZ-GRGS cooperation, Geophysical Research Abstracts, A-03426, Vol. 10, EGU General Assembly 2008.

  • Grafarend E., Ardalan A.A., Sideris M.G., 1999, The spheroidal fixed-free two-boundary-value problem for geoid determination (the spheroidal Bruns transformation). J. of Geod., 73, 513-533.

  • Hamesh M., Zomorrodian H., 1992, Iranian gravimetric geoid determination-second step, NCC J. Surveying, 6, 52-63.

  • Heiskanen W.A., Moritz H., 1967, Physical geodesy, Freeman, San Francisco, 364 pp.

  • Huang J., Vaníček P., Pagiatakis S., Brink W., 2001, Effect of topographical mass density variation on gravity and geoid in the Canadian Rocky Mountains. J. Geod., 74, 805-815.

  • Huang J., Véronneau M., 2005, Applications of downward-continuation in gravimetric geoid modeling: case studies in Western Canada, J. Geod 79, 135-145.

  • Jäggi A., Beutler G., Meyer U., Prange L., Dach R., Mervart L., 2009, AIUB-GRACE02S-Status of GRACE Gravity Field Recovery using the Celestial Mechanics Approach, presented at the IAG Scientific Assembly 2009, August 31-September 4 2009, Buenos Aires, Argentina.

  • Kiamehr R., 2006, A strategy for determining the regional geoid by combining limited ground data with satellite-based global geopotential and topographical models: a case study of Iran. J. Geod., 79, 602-612.

  • Kiamehr R., Sjöberg L.E., 2005a, The qualities of Iranian gravimetric geoid models versus recent gravity field missions. Stud. Geophys. Geod., 49, 289-304.

  • Kiamehr R., Sjöberg L.E., 2005b, Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran, J. Geod., 79, 540-551.

  • Kotsakis C., Sideris M.G., 1999, On the adjustment of combined GPS_levelling/geoid networks. J. Geod., 73, 412-421.

  • Li Y.C., Sideris G., Schwarz K.P., 1995, A numerical investigation on height anomaly Prediction in mountain areas, Bulletin Géodésique, 69,143-156, 1995.

  • Martinec Z., 1996, Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J. Geod., 70, 805-828.

  • Martinec Z., 1998, Boundary-Problems for Gravimetric Determination of a Precise Geoid, Springer Verlag Berlin Heidelberg.

  • Molodensky M.S., Eremeev V.F., Yurkina M.I., 1962, Methods for study of the external gravitational field and figure of the Earth. Translated from Russian by the Israel program for scientific translations, Office of Technical Services Department of Commerce, Washington, D.C.

  • Moritz H., 1980, Advanced Physical Geodesy, Herbert Wichmann Verlag.

  • Mayer-Gürr T., Kurtenbach E., Eicker A., 2010, ITG-Grace2010: the new GRACE gravity field release computed in Bonn, Geophysical Research Abstracts, A-03426, Vol. 12, EGU2010-2446, EGU General Assembly 2010.

  • Najafi M., 2004, Determination of Precise geoid for Iran based on Stokes-Helmert Scheme. Report 2003, National Cartographic Center of Iran (NCC), TOTAK Project, Iran.

  • Novák P., Vaniček P., Véronneau M., Holmes S.A., Featherstone W.E., 2001, On the accuracy of modified Stokes's integration in high-frequency gravimetric geoid determination. J. Geod., 74, 644-654.

  • Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., 2008, An Earth gravitational model to degree 2160: EGM2008, Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13-18.

  • Rodriguez E., Morris C.S., Belz J.E., Chapin E.C., Martin J.M., Daffer W., Hensley S., 2005, An Assessment of the SRTM Topographic Products. Technical Report JPL D-31639, Jet Propulsion Laboratory, Pasadena, California.

  • Safari A., Ardalan A. A., Grafarend, E.W., 2005, A new ellipsoidal gravimetric, satellite altimetry, astronomic boundary value problem; case study: geoid of Iran. J. Geodyn., 39, 545-568.

  • Sideris M.G., 1990, Rigorous gravimetric terrain modelling using Molodensky's operator, Manuscr. Geod. 15:97-106.

  • Sideris M.G., Schwarz K.P., 1987, Improvement of medium and short wavelength features of geopotential solutions by local gravity data, Boll. Geod. Sci. Affini, Vol. XLVI, 207-221.

  • Sjöberg L.E., 1984, Least squares modification of Stokes' and Vening Meinesz' formulas by accounting for truncation and potential coefficient errors, Manuscr. Geod., 9, 209-229.

  • Sjöberg L.E., 1995, On quasigeoid to geoid separation, Manuscr. Geod, 20, 182-192.

  • Sjöberg L.E., 2003a, A computational scheme to model the geoid by the modified Stokes formula without gravity reductions. J. Geod., 74, 255-268.

  • Sjöberg L.E., 2003b, A general model of modifying Stokes' formula and its least squares solution. J. Geod., 77, 459-464.

  • Sjöberg L.E. 2003c, A solution to the downward continuation effect on the geoid determined by Stokes' formula. J Geod, 77, 94-100.

  • Sjöberg L.E., 2005, A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modeling, J. Geod., 78, 645-653.

  • Sjöberg L.E., 2006, A refined conversion from normal height to orthometric height, Stud. Geophys. Geod., 50, 595-606.

  • Stokes G.G., 1849, On the variation of gravity on the surface of the Earth. Trans Camb Phil Soc 8: 672-695.

  • Tapley B., Ries J.,Bettadpur S., Chambers D., Cheng M., Condi F., Poole S. 2007, The GGM03 Mean Earth Gravity Model from GRACE, Eos Trans. AGU 88(52), Fall Meet. Suppl., Abstract G42A-03.

  • Tenzer R., Novák P., Moore P., Kuhn N., Vaníček P., 2006, Explicit formula for the geoid-quasigeoid separation, Stud. Geophys. Geod., 50, 607-618.

  • Tscherning C.C., 1991, The use of optimal estimation for gross-error detection in databases of spatially correlated data. BGI, Bulletin d' Information 68, 79-89.

  • Tscherning C.C., Forsberg R., 1987, Geoid determination in the Nordic countries from gravity and height data., Boll. Geod. Sci. Aff., 46, 21-43.

  • Vaníček P., Kleusberg A., 1987, The Canadian geoid-Stokesian approach. Manuscr. Geod, 12, 86-98.

  • Vaníček P., Sjöberg L.E., 1991, Reformulation of Stokes's theory for higher than second-degree reference field and modification of integration kernels. J. Geophysical Research-Solid Earth, 96, 6529-6539.

  • Vaníček P., Najafi M., Martinec Z., Harrie L., Sjöberg L.E., 1995, Higher degree reference field in the generalized Stokes-Helmert scheme for geoid computation. J. Geod., 70, 176-182

  • Vaníček P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P. and TerHorst B., 1996, Downward continuation of Helmert's gravity anomaly. J. Geod., 71, 21-34.

  • Vaníček P., Featherstone W.E., 1998, Performance of three types of Stokes's kernel in the combined solution for the geoid, J. Geod., 72, 684-697.

  • Vaníček P., Tenzer R., Sjöberg L.E., Martinec Z., Featherstone W.E., 2004, New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460-472.

  • Weber G., Zomorrodian H., 1988, Regional geopotential model improvement for the regional Iranian geoid determination. Bulletin Géodésique, 62, 125-141.

  • Zhou Q., Liu X., 2004, Analysis of errors of derived slope and aspect related to DEM data properties, Computers & Geosciences, 30, 369-378.


Journal + Issues

Journal of Geodetic Science is a peer-reviewed, electronic-only journal that publishes original, high-quality research on topics broadly related to Geodesy. The journal focuses on theoretical and application papers.