Estimating Canadian vertical datum offsets using GNSS/levelling benchmark information and GOCE global geopotential models

T. Hayden 1 , B. Amjadiparvar 1 , E. Rangelova 1 , and M.G. Sideris 1
  • 1 Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada

Abstract

The performance of GOCE-based geopotential models is assessed for the estimation of offsets for three regional vertical datums in Canada with respect to a global equipotential surface using the GNSS benchmarks from the first-order vertical control network. Factors that affect the computed value of the local vertical datum offset include the GOCE commission and omission errors, measurement errors, the configuration of the network of GNSS/levelling benchmarks, and systematic levelling errors and distortions propagated through the vertical control network. Among these various factors, the effect of the GOCE omission error on the datum offsets is investigated by extending the models with the high resolution gravity field model EGM2008 and by means of Canada’s official high resolution geoid model CGG2010. The effect of the GOCE commission error in combination with errors from the GNSS/levelling data is also examined, in addition to the effect of systematic levelling errors. In Canada, the effect of the GOCE omission error is at the dm-level when computing local vertical datum offsets. The effect of including accuracy information for the GNSS/levelling data and the GOCE geoid heights can be up to 4 cm over the Canadian mainland and at the dm-level for island regions. Lastly, the spatial tilts found in the levelling network can be modelled with a 2-parameter bias corrector model, which reduces the RMS of the adjusted geoid height differences by 4 cm when compared to the RMS of adjusted geoid height differences computed without the use of a bias corrector model. Thus, when computing local vertical datum offsets in Canada, it is imperative to account for GOCE commission and omission errors, ellipsoidal and levelling height errors, as well as the systematic levelling errors of the vertical control network.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Altamimi Z., Sillard P. and Boucher C., 2007, ITRF2005 A new release of the International Terrestrial Reference Frame, J. Geophys. Res., 112, doi: 10.1029/2007JB004949.

  • Argus D.E. and Peltier W.R., 2010, Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697-723, doi: 10.1111/j.1365-246X.2010.04562.x.

  • Balasubramania N., 1994, Definition and realization of the global vertical datum, OSU Report No. 427, The Ohio State University, Columbus, USA.

  • Bingham R. and Haines K., 2006, Mean dynamic topography: Intercomparisons and errors, Philos. Trans. R. Soc., Ser. A., 264, 903-916.

  • Bomford G., 1971, Geodesy, 3rd Ed., Oxford University Press, Oxford.

  • Burša M., Kouba J., Müller A., Radĕj K., True S.A., Vatrt V. and Vojitišková M., 2001, Determination of geopotential differences between local vertical datums and realization of a world height system, Stud. Geophys. Geod., 45, 127-132.

  • Burša M., Kenyon S., Kouba J., Šima Z., Vatrt V. and Vojitišková M., 2004, A global vertical reference frame based on four regional vertical datums, Stud. Geophys. Geod., 48, 493-502.

  • Colombo O.L., 1980, A world vertical network, OSU Report No. 296, The Ohio State University, Columbus, USA.

  • Craymer M.R. and Lapelle E., 1997, The GPS Supernet: An Integration of GPS Projects Across Canada, Internal Report, Geodetic Survey Division, Natural Resources Canada, Ottawa, Canada.

  • Drinkwater M.R., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003, VII: Closing Session: GOCE: ESA’s First Earth Explorer Core Mission, Space Sci. Rev., 108, 1-2, 419-432.

  • Ekman M., 1989, Impacts of geodynamic phenomena on systems for height and gravity, Bull. Geod., 63, 281-296.

  • Entin I.I., 1959, Main Systematic Errors in Precise Levelling, Bull. Geoid., 52, 1, 37-45.

  • Forsberg R. and Tscherning C., 1981, The use of height data in gravity field approximations by collocation, J. Geophys. Res., 86, B9, 7843-7854.

  • Forsberg R., 1984, A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling, OSU Report No. 355, Department of Geodetic Science and Surveying, Ohio State University, Columbus, USA.

  • Forsberg R., 1985, Gravity field terrain effect computations by FFT, Bull. Geod., 59, 4, 342-360, doi: 10.1007/BF02521068.

  • Fotopoulos G., 2003, An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data, PhD Thesis, UCGE Report No. 20185, Department of Geomatics Engineering, University of Calgary, Calgary, Canada.

  • Gerlach C. and Rummel R., 2012, Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach, J. Geod., doi: 10.1007/s00190-012-0579-y.

  • Gruber T., Visser P.N.A.M., Ackermann C. and Hosse M., 2011, Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons, J. Geod., 85, 11, 845-860.

  • Heck B., 1990, An evaluation of some systematic error sources affecting terrestrial gravity anomalies, Bull. Geod., 64, 88-108.

  • Heck B. and Rummel R., 1990, Strategies for solving the vertical datum problem using terrestrial and satellite geodetic data, IAG Symp. Series, 104, 116-128, Springer, Berlin.

  • Heiskanen W. and Mortiz H., 1967, Physical geodesy, WH Freeman, San Francisco, USA.

  • Hirt C., Featherstone W. E. and Marti U., 2010, Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data, J. Geod., 84, 557-567.

  • Hirt C., Kuhn M., Featherstone W.E. and Göttl F., 2012, Topographic/ isostatic evaluation for new-generation GOCE gravity field models, J. Geophys. Res., 117, B05407, doi: 10.1029/2011JB00878.

  • Ihde J., Adam J., Gurtner W., Harsson B.G., Sacher M., Schlüter W. et al., (2000), The height solution of the European Vertical Reference Network (EUVN), In: Veröffentlichungen der Bayerischen Kommission fur die Internationale Erdmessung, Bayerische Akademie der Wissenschaften, 61, 132-145, München.

  • Ihde J. and Sánchez L., 2005, A unified global height reference system as a basis for IGGOS, J. Geodyn., 40, 400-413.

  • Ince E.S., Sideris M.G., Huang J. and Véronneau M, (2012), Assessment of the GOCE Global Gravity Models in Canada, Geomatica, 66, 2, 125-145.

  • Jekeli C., 2000, Heights, the Geopotential, and Vertical Datums, OSU Report No. 459, Ohio State University, Columbus, USA.

  • Jekeli C., Yanh H.J. and Kwon J.H., 2009, Evaluation of EGM2008-globally and locally in South Korea, Newt. Bull., 4, 38-49.

  • Kotsakis C., Katsambalos K. and Ampatzidis D., 2011, Estimation of the zero-height geopotential level WLVD 0 in a local vertical datum from inversion of co-located GPS, levelling and geoid heights: a case study in the Hellenic islands, J. Geod., doi: 10.1007/s00190-011-0530-7.

  • Mäkinen J. and Ihde J., 2009, The permanent tide in height systems, IAG Symp. Series, 133, 81-87, Springer, Berlin.

  • Mayer-Gürr T. et al., 2012, The new combined satellite only model goco03s, abstract submitted to GGHS2012, available at http://www.goco.eu/.

  • Mayer-Gürr T., Kurtenbach E. and Eicker A., 2010, available at http://www.igg.unibonn.de/apmg/index. php?id=itg-grace2010.

  • Mayer-Gürr T., Eicker A. and Ilk K.H., 2007, available at http://www.igg.unibonn.de/apmg/index.php? id=itg-grace03.

  • National Geodetic Survey, NGS, 1996, The new adjustment of the North American Vertical Datum, A collection of papers describing the planning and implementation of the adjustment of the North American Vertical Datum, ACSM Bulletin and Canadian and US final status report from 1990.

  • Natural Resources Canada, 2007, The Atlas of Canada, available at http://atlas.nrcan.gc.ca/auth/english/ maps/reference/national/reliefinteractive.

  • Pail R., Goiginger H., Schuh W.D., Höck E., Brockmann J.M., Fecher T. et al., 2010, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314, doi:10.1029/2010GL044906.

  • Pail R., Bruinsma S., Migliaccio F., Foerste C., Goiginger H., Schuh W.D. et al., 2011, First GOCE gravity field models derived by three different approaches., J.Geod., 81, 11, doi: 10.1007/s00190-011-0467.

  • Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012, The development and evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res., 117, B04406, doi: 10.1029/2011JB008916.

  • Petit G. and Luzum B., eds., 2010, IERS Convention 2010, IERS Technical Note 36, Verlag den Bundesamtes für Kartographie und Geodäsie, Frankfurt.

  • Rapp R.H. and Balasubramania N., 1992, A conceptual formulation of a world height system, OSU Report No. 421, The Ohio State University, Columbus, USA.

  • Rummel R. and Ilk K.H., 1995, Height datum connection - the ocean part, Allgemeine Vermessungsnachrichten, 8-9, 321-330.

  • Rummel R. and Teunissen P., 1988, Height datum definition, height datum connection and the role of the geodetic boundary value problem, Bull. Géod., 62, 477-498.

  • Sánchez L., 2009, Strategy to Establish a Global Vertical Reference System, H. Drewes (ed.), Geodetic ReferenceFrames, IAG Symp. Series, 134, doi: 10.1007/978-3-642-00860-3_42.

  • Sneeuw N. and Schaub H., 2005, Satellite clusters for future gravity field missions, IAG Symp. Series, 129, 12-17, Springer, Berlin.

  • Sturges W., 1967, Slope of sea level along the Pacific Coast of the United States, J. Geophys. Res., 72, 14, 3627-3637, doi: 10.1029/JZ072i014p03627.

  • Sturges W., 1974, Sea level slope along continental boundaries, J. Geophys. Res., 79, 6, 825-830, doi: 10.1029/JC079i006p00825.

  • Thompson K.R., Huang J., Véronneau M., Wright D.G. and Lu Y., 2009, Mean surface topography of the northwest Atlantic: Comparison of estimates based on satellite, terrestrial gravity, and oceanographic observations, J. Geophys. Res., 114, C07015, doi:10.1029/2008JC004859.

  • Vaníček P., 1991, Vertical Datum and NAVD88, Surv. and Land Info. Sys., 51, 2, 83-86.

  • Véronneau M., 2006, Demystifying the vertical datum in Canada: A case study in the Mackenzie Delta, Technical Report, Natural Resources Canada, Ottawa, Ontario, Canada, available at http://www.geod.nrcan.gc.ca/hm/pdf/ verticaldatumsdeltav10_e.pdf.

  • Véronneau M. and Héroux P., 2006, Canadian Height Reference System Modernization: Rational Status and Plans, Technical Report, Natural Resources of Canada, Ottawa, Ontario, Canada, available at http://www.geod.nrcan.gc. ca/hm/pdf/geocongres_e.pdf.

  • Véronneau M., Duval R. and Huang J., 2006, A gravimetric geoid model as a vertical datum for Canada, Geomatica, 60, 2, 165-172.

  • Véronneau M., 2012, Adjustment of Levelling Data in Canada: Nov07, Technical Report, Natural Resources Canada, Ottawa, Ontario, Canada.

  • Xu P., 1992, A quality investigation of vertical datum connection, Geophys. J. Int., 110, 361-370.

OPEN ACCESS

Journal + Issues

Search