Skip to content
Open Access Published by De Gruyter Open Access January 29, 2013

Intercontinental height datum connection with GOCE and GPS-levelling data

  • T. Gruber EMAIL logo , C. Gerlach and R. Haagmans

Abstract

In this study an attempt is made to establish height system datum connections based upon a gravity field and steady-state ocean circulation explorer (GOCE) gravity field model and a set of global positioning system (GPS) and levelling data. The procedure applied in principle is straightforward. First local geoid heights are obtained point wise from GPS and levelling data. Then the mean of these geoid heights is computed for regions nominally referring to the same height datum. Subsequently, these local mean geoid heights are compared with a mean global geoid from GOCE for the same region. This way one can identify an offset of the local to the global geoid per region. This procedure is applied to a number of regions distributed worldwide. Results show that the vertical datum offset estimates strongly depend on the nature of the omission error, i.e. the signal not represented in the GOCE model. For a smooth gravity field the commission error of GOCE, the quality of the GPS and levelling data and the averaging control the accuracy of the vertical datum offset estimates. In case the omission error does not cancel out in the mean value computation, because of a sub-optimal point distribution or a characteristic behaviour of the omitted part of the geoid signal, one needs to estimate a correction for the omission error from other sources. For areas with dense and high quality ground observations the EGM2008 global model is a good choice to estimate the omission error correction in theses cases. Relative intercontinental height datum offsets are estimated by applying this procedure between the United State of America (USA), Australia and Germany. These are compared to historical values provided in the literature and computed with the same procedure. The results obtained in this study agree on a level of 10 cm to the historical results. The changes mainly can be attributed to the new global geoid information from GOCE, rather than to the ellipsoidal heights or the levelled heights. These historical levelling data are still in use in many countries. This conclusion is supported by other results on the validation of the GOCE models.

References

Arabelos D. and Tscherning C. C., 2001, Improvements in height datum transfer expected from the GOCE mission. J. Geod. 75, 308-312, DOI:10.1007/s001900100187.10.1007/s001900100187Search in Google Scholar

Bruinsma S., Marty J. C., Balmino G., Förste C., Abrikosov O. and Neumayer K. H., 2010, GOCE Gravity Field Recovery by Means of the Direct Numerical Method, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686, earth.esa.int/GOCE.Search in Google Scholar

Drinkwater M., Haagmans R., Muzi D., Popescu A., Floberghagen R., Kern M. and Fehringer M., 2007, The GOCE Gravity Mission: ESA’s First Core Earth Explorer, ESA Special Publication SP-627.Search in Google Scholar

Featherstone W. E. and Filmer M. S., 2012, The north-south tilt in the Australian Height Datum is explained by the ocean’s mean dynamic topography, J. Geophys. Res. - Oceans 117, C08035, DOI: 10.1029/2012JC007974 Gruber Th., Visser P. N. A. M., Ackermann C. and Hosse M., 2011, Validation of GOCE Gravity Field Models by Means of Orbit Residuals and Geoid Comparisons, J. Geod. 85, p.845-860. DOI:10.1007/s00190-011-0486-7.10.1007/s00190-011-0486-7Search in Google Scholar

Heiskanen W. A. and Moritz H., 1967, Physical Geodesy, W.H.Freeman & Co Ltd.10.1007/BF02525647Search in Google Scholar

Hirt C., Featherstone W. and Marti U., 2010, Combining EGM2008 and SRTM/DTM2006.0 residual terrain model data to improve quasigeoid computations in mountainous areas devoid of gravity data. J Geod. 84, 557-567. DOI:10.1007/s00190-010-0395-1 Ihde J. and Sacher M., 2002, EUREF Publication 11/I, Mittelungen Des Bundesamtes Für Kartographie Und Geodäsie, Frankfurt/Main 25.Search in Google Scholar

Kenyeres A., Sacher M., Ihde J., Denker H. and Marti U., 2007, EUVN_ DA: Establishment of a European Continental GPS/levelling Network, Proceedings of the 1st International Symposium of the International Gravity Field Service, Istanbul 2006, Harita Dergisi, Special Issue, Nr. 18.Search in Google Scholar

Kotsakis C. and Katsambalos K., 2010, Quality Analysis of Global Geopotential Models at 1542 GPS/levelling Bench marks Over the Hellenic Mainland, Surv. Rev. 42, (September 5): 327-344. DOI:10.1179/003962610X12747001420500.10.1179/003962610X12747001420500Search in Google Scholar

Migliaccio F., Reguzzoni M., Sansò F., Tscherning C. and Veicherts M., 2010, GOCE Data Analysis: The Space-wise Approach and the First Space-wise Gravity Field Model, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686, earth.esa.int/GOCE.Search in Google Scholar

Nerem R. S., Lerch F. J., Marshall J. A., Pavlis E. C., Putney B. H., Tapley B. D., Eanes R. J. et al., 1994, Gravity Model Development for TOPEX/POSEIDON: Joint Gravity Models 1 and 2, J. Geophys. Res. 99, 24421-24447. DOI:199410.1029/94JC01376.10.1029/94JC01376Search in Google Scholar

Pail R., Goiginger H., Mayrhofer R., Schuh W. D., Brockmann J. M., Krasbutter I., Höck E. and Fecher T., 2010, GOCE Gravity Field Model Derived from Orbit and Gradiometry Data Applying the Time-wise Method, Proceedings of the ESA Living Planet Symposium, 28 June - 2 July 2010, Bergen, Norway, ESA SP-686, earth.esa.int/GOCE.Search in Google Scholar

Pail R., Goiginger H., Schuh W. D., Höck E., Brockmann J. M., Fecher T., Gruber T. et al., 2010, Combined Satellite Gravity Field Model GOCO01S Derived from GOCE and GRACE, Geophys. Res. Lett. 37 (October 28): 5 PP. DOI:201010.1029/2010GL044906.10.1029/2010GL044906Search in Google Scholar

Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.D., Höck E. et al., 2011, First GOCE Gravity Field Models Derived by Three Different Approaches, J. Geod. 85, 819-843. DOI:10.1007/s00190-011-0467-x.10.1007/s00190-011-0467-xSearch in Google Scholar

Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2012, The Development and Evaluation of the Earth Gravitational Model 2008 (EGM2008), J. Geophys. Res. 117, DOI:201210.1029/2011JB008916.10.1029/2011JB008916Search in Google Scholar

Rapp R. H., 1997, Use of Potential Coefficient Models for Geoid Undulation Determinations Using a Spherical Harmonic Representation of the Height Anomaly/geoid Undulation Difference, J. Geod. 71, p. 282-289. DOI:10.1007/s001900050096.10.1007/s001900050096Search in Google Scholar

Rapp R. H., Wang Y. M. and Pavlis N., 1991, The Ohio State 1991 Geopotential and Sea Surface Topography Harmonic Coefficient Models, Report No. 410, Department of Geodetic Science and Surveying, The Ohio State University.Search in Google Scholar

Rapp R. H., 1994, Separation Between Reference Surfaces of Selected Vertical Datums, J. Geod. 69, p. 26-31, DOI:10.1007/BF00807989.10.1007/BF00807989Search in Google Scholar

Tscherning C. and Rapp R. H., 1974, Closed Covariance Expressions for Gravity Anomalies, Geoid Undulations, and Defiections of the Vertical Implied by Anomaly Degree Variance Models, Report No. 208, Department of Geodetic Science and Surveying, The Ohio State University.Search in Google Scholar

Wang Y. M., Saleh J., Li X. and Roman D. R., 2011, The US Gravimetric Geoid of 2009 (USGG2009): Model Development and Evaluation, J. Geod. 86, 165-180. DOI:10.1007/s00190-011-0506-7.10.1007/s00190-011-0506-7Search in Google Scholar

Woodworth P. L., Hughes C., Bingham R. and Gruber T, 2012, Towards Worldwide Heigth System Unification using Ocean Information, J. Geod. Sci., 2, 4, 302-318.10.2478/v10156-012-0004-8Search in Google Scholar

Published Online: 2013-01-29
Published in Print: 2012-12-1

This content is open access.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/v10156-012-0001-y/html
Scroll to top button