How Significant is the Dynamic Component of the North American Vertical Datum?

E. Rangelova 1 , W. Van Der Wal 2 , and M.G. Sideris 1
  • 1 Department of Geomatics Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
  • 2 Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

Abstract

One of the main current geodetic activities in North America is the definition and establishment of a geoid-based vertical datum that will replace the official CGVD28 and NAVD88 datums in Canada and the USA, respectively. The new datum will also have a time-dependent (dynamic) component required by the targeted one-centimetre accuracy of the datum. Heights of the levelling benchmarks are subject to temporal changes, which contribute to the degradation of the accuracy of the datum and increase the misfit of the geoid heights determined gravimetrically and by GNSS/levelling. The zero level surface, i.e., the geoid, also changes with time, most significantly due to postglacial rebound, climate-induced loss of polar ice masses and mountain glaciers, and hydrology variations. In this study, we examine the possible changes of the datum due to the aforementioned factors. We are mostly concerned with postglacial rebound as it can contribute more than 1 mm per year and more than 1 cm per decade to the geoid change. We also assess the significance of the temporal geoid and benchmark height changes and show that, compared to its current accuracy, the geoid change is only significant after a decade mostly in the flat areas of central Canada.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ali I., 2006, A globally consistent and dynamic Canadian gravity reference frame for a modern heighting system and other applications, MSc thesis, University of York, Toronto.

  • Argus D.F., Gordon R.G., Heflin M.B., Eanes R.J., Ma C., Willis P., Peltier W.R. and Owen S.E., 2010, The angular velocity of the plates and the velocity of Earth’s center from space geodesy, Geophys. J. Int., 180, 913-960, doi:10.1111/j.1365-246X.2010-x.

  • Argus D.F. and Peltier W.R., 2010, Constraining models of postglacial rebound using space geodesy: a detailed assessment of model ICE-5G (VM2) and its relatives, Geophys. J. Int., 181, 697-723, doi: 10.1111/j.1365-246X.2010.04562.x.

  • Biró P., Heck B. and Thông N.C., 1986, On a new approach into the solution of the three-dimensional geodetic-geodynamic boundary value problem, AVN- Int. Edition, 3, 9-21.

  • Craymer M.R. and Lapelle E., 1997, The GPS Supernet: An Integration of GPS Projects Across Canada, Internal Report, Geodetic Survey Division, Geomatics Canada, Ottawa.

  • Ekman M., 1989, Impacts of geodynamics phenomena on systems for heights and gravity, Bull. Geod., 63, 281-293.

  • Farrell W.E. and Clark J.A., 1976, On postglacial sea-level, Geophys. J., 46.

  • Gardner A.S., Moholdt G., Wouters B., Wolken G.J., Burgess D.O., Sharp M.J, Cogley J.G., Braun C. and Labine C., 2012, Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago, Nature Geosci., 473, 357-160.

  • Hayden T., Rangelova E., Sideris M.G. and Véronneau M., 2012, Evaluation of W0 using Canadian tide gauges and GOCE gravity field models, J Geod. Sci. 2, 4, 290-301.

  • Heiskanen W.A. and Mortiz H., 1967, Physical Geodesy, WH Freeman, San Francisco, USA, Reprint, Technical University, Graz, Austria, 1999.

  • Huang J. and Véronneau M., 2013, Canadian Gravimetric Geoid Model 2010, J. Geod. (in press).

  • Jacob T., Wahr J., Gross R. and Swenson S., 2012, Estimating geoid height change in North America: past, present and future, J. Geod. 86, 337-358, DOI 10.1007/s00190-011-0522-7.

  • Jensen L., 2010, Schätzung der Eismassenbilanz von Grönland mit Hilfe von GRACE und komplementären Daten, Masterarbeit, Universität Bonn.

  • Kusche J., Schmidt R., Petrovic S. and Rietbroek R., 2009, Decorrelated GRACE Time-Variable Gravity Solutions by GFZ, and their Validation using a Hydrological Model, J. Geod. 83, 903-913, doi:10.1007/s00190-009-0308-3.

  • Luthcke S.B., Arendt A.A., Rowlands D.D., McCarthy J.J. and Larsen C.F., 2008, Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions, J. Glaciology, 54, 767-777.

  • Luthcke S.B., Zwally H.J., Abdalati W., Rowlands D.D., Ray R.D., Nerem R.S., Lemoine F.G., McCarthy J.J. and Chinn D.S., 2006, Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations, Science, 314, 1,286-1,289.

  • Peltier W.R., 2004, Global glacial isostasy and the surface of the ice-age earth: the ICE-5G (VM2) model and GRACE, Ann. Rev. Earth planet. Sci., 32, 111-149.

  • Petit G. and Luzum B. (eds.), 2010, IERS Conventions 2010, IERS Technical Note 36. Verlag des Bundesamtes für Kartographie und Geodäsie, Frankfurt am Main.

  • Poutanen M., Vermeer M. and Mäkinen J., 1996, The permanent tide in GPS positioning, J. Geod., 70, 8, 499-504.

  • Rangelova E., Fotopoulos G. and Sideris M.G., 2009, On the use of iterative re-weighting least-squares and outlier detection for empirically modelling rates of vertical displacement, J. Geod. 83, 523-535.

  • Rangelova E., Fotopoulos G. and Sideris M.G., 2010, Implementing a dynamic geoid as a vertical datum for orthometric heights in Canada, In: IAG Symposia, Vol. 135, Mertikas, S.P.P. (Ed.), Gravity, Geoid and Earth Observation, IAG Commission 2 Gravity Field, Chania, Greece, June 23-27, 2008, Springer, 295-302.

  • Rangelova E. and Sideris M.G., 2008, Contributions of surface measurements and GRACE data to the study of the secular geoid changes in North America, J. Geodyn., 46 (3-5), 131-143, doi: 10.1016/j.jog.2008.03.006.

  • Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.-J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D. and Toll D., 2004, The Global Land Data Assimilation System, Bull. Amer. Meteor. Soc., 85, 3, 381-394.

  • Smith, D.A., Véronneau, M., Roman, D.R., Huang, J., Wang, Y.M. and Sideris M.G., 2013, Towards the unification of the vertical datum over the North American continent, In: Altamimi and Collilieux (eds.), Reference Frames for Applications in Geosciences, IAG Symposia 138, DOI 10.1007/978-3-642-32998-2_36.

  • Spada G., Barletta V.R., Klemann V., Riva R.E.M., Martinec Z., Gasperini P., Lund B., Wolf D., Vermeersen L.L.A. and King M.A., 2011, A benchmark study for glacial isostatic adjustment codes, Geophys. J. Int., 185, 106-132.

  • Steffen H., Petrovic S., Muller J., Schmidt R., Wunsch J., Barthelmes F. and Kusche J., 2009, Significance of secular trends of mass variations determined from GRACE solutions, J. Geodyn., 48, 157-165.

  • Sun W. and Sjöberg L., 2001, Permanent components of the crust, geoid and ocean depth tides, J. Geodyn., 31, 323-339.

  • Swenson S. and Wahr J., 2006, Post-processing removal of correlated errors in GRACE data, Geophys. Res. Lett., 33, L08402, doi:10.1029/2005GL025285.

  • Syed T.H., Famiglietti J.S., Rodell M., Chen J. and Wilson C.R., 2008, Analysis of terrestrial water storage changes from GRACE and GLDAS, Water Resour. Res., 44, W02433, doi:10.1029/2006WR005779.

  • Tamisiea M.E., 2011, Ongoing glacial isostatic contributions to observations of sea level change, Geophys. J. Int., 186, 1,036-1,044.

  • Tamisiea M.E., Leuliette E.W., Davis J.L. and Mitrovica J.X., 2005, Constraining hydrology and cryospheric mass flux in southeastern Alaska using space-based gravity measurements, Geophys. Res. Lett., 32, L20501, doi:10.1029/2005GL023961.

  • Tapley B.D., Bettadpur S., Ries J.C., Thompson P.F. and Watkins M.M., 2004a, GRACE Measurements of Mass Variability in the Earth System, Science, 305, 503-505, doi: 10.1126/science. 1099192.

  • Tapley B.D., Bettadpur S., Watkins M. and Reigber C., 2004b, The gravity recovery and climate experiment: Mission overview and early results, Geophys. Res. Lett., 31, L09607, doi:10.1029/2004GL019920. van der Wal W., Kurtenbach E., Kusche J. and Vermeersen B., 2011, Radial and tangential gravity rates from GRACE in areas of glacial isostatic adjustment, Geophys. J. Int., doi: 10.1111/j.1365-246X.2011.05206.x.

  • Véronneau M. and Héroux P., 2006, Canadian Height Reference System Modernization: Rational Status and Plans, Report Natural Resources of Canada, Ottawa, Ontario, Canada, http://www.geod.nrcan.gc.ca/hm/pdf/ geocongres_e.pdf.

  • Wahr J., DaZhong H. and Trupin A., 1995, Prediction of vertical uplift caused by changing polar ice volume on a viscoelastic Earth, Geophys. Res. Lett., 22, 977-980.

  • Wu X., Collilieux X., Altamimi Z., Vermeersen B.L.A., Gross R.S. and Fukumori I., 2011, Accuracy of the International Terrestrial Reference Frame origin and Earth expansion, Geophys. Res. Lett., 38, L13304, doi:10.1029/2011GL047450.

  • Wu P. and Peltier W.R., 1984, Pleistocene deglaciation and the earth’s rotation: a new analysis, Geophys. J. R. Astr. Soc., 76, 753-792.

  • Wu X., Ray J. and van Dam T., 2012, Geocenter motion and its geodetic and geophysical implications, J. Geodyn., 58, 44-61.

OPEN ACCESS

Journal + Issues

Search