Referencing regional geoid-based vertical datums to national tide gauge networks

D. Bolkas 1 , G. Fotopoulos 1 , and M. G. Sideris 2
  • 1 The University of Texas at Dallas, Department of Geosciences, 800 W Campbell Rd, Richardson, TX 75080, USA
  • 2 University of Calgary, Department of Geomatics Engineering, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada


The objective of this study is to investigate the best means for referencing a regional geoid-based vertical datum to a network of tide gauges. In this study, a network of 27 tide gauge stations scattered along the coasts of Canada are used in order to assess the replacement of the conventionally derived Canadian Geodetic Vertical Datum of 1928 with a geoid-based datum. This is in-line with the future implementation plan of Canada’s geoid-based vertical height system. A mixed least-squares adjustment was performed for various scenarios, including satellite-only global geoid models, combined global geoid models and regional geoid models. In addition, various sea surface topography and vertical ground motion models were tested for estimating orthometric heights. The resulting approximation of a local equipotential surface is compared to previously published values and considerations for referencing a geoid-based vertical datum to tide gauge networks are emphasized.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Amos M. J. and Featherstone W. E., 2009, Unification of New Zealand’s local vertical datums: iterative gravimetric quasigeoid computations, J Geod., 83, 1, 57-68.

  • Andersen O. B. and Knudsen P., 2009, The DNSC08 mean sea surface and mean dynamic topography, J Geophys. Res., 114, C11.

  • Braun A., Kuo C. Y., Shum C. K., Wu P., van der Wal W. and Fotopoulos G., 2008, Glacial Isostatic Adjustment at the Laurentide ice sheet margin. Models and Observations in the Great Lakes Region, J Geodynam., 46, 3-5, 165-173.

  • Burša M., Kenyon S., Kouba J., Šima Z., Vatrt V., Vojtech V. and Vojtišková M., 2007, The geopotential value W0 for specifying the relativistic atomic time scale and a global vertical reference system, J Geod., 81, 103-110.

  • Church J. A. and White N. J., 2011, Sea-Level Rise from the Late 19th to the Early 21st Century. Surv. Geophys., 32, 4-5, 585-602.

  • Ekman M., 1989, Impacts of geodynamic phenomena on systems for height and gravity, Bull Geod., 63, 281-296.

  • Fotopoulos G., 2003, An analysis on the optimal combination of geoid, orthometric and ellipsoidal height data. PhD Thesis,UCGE Report no. 20185, Department of Geomatics Engineering, University of Calgary, Calgary.

  • Gruber T., Visser P. N. A. M., Ackermann C. and Hosse M., 2011, Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons, J Geod., 85:845-860.

  • Köhl A., Stammer D. and Cornuelle B., 2007, Interannual to decadal changes in the ECCO global synthesis, J Phys. Oceanogr., 37, 313-337.

  • Köhl A. and Stammer D., 2008, Variability of the Meridional Overturning in the North Atlantic from the 50 years GECCO State Estimation, J Phys. Oceanogr., 38, 1913-1930.

  • Kotsakis C., Katsambalos K. and Ampatzidis D., 2012, Estimation of the zero-height geopotential levelW0 LVD in a local vertical datum from inversion of co-located GPS, leveling and geoid heights: a case study in the Hellenic islands, J Geod., 86, 6, 423-439.

  • Marshall J., Hill C., Perelman L. and Adcroft A., 1997a, Hydrostatic, quasi-hydrostatic, and non- hydrostatic ocean modeling, J Geophys. Res., 102, C3, 5733-5752.

  • Marshall J., Adcroft A., Hill C., Perelman L. and Heisey C., 1997b, A finite-volume, incompressible Navier-Stokes model for studies ocean on parallel computers, J Geophys. Res., 102, 5753-5766.

  • Maximenko N., Niiler P., Rio M. H., Melnichenko O., Centurioni L., Chambers D., Zlotnicki V. and Galperin B., 2009, Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques, J Atmos. Ocean. Tech., 26, 9, 1910-1919.

  • Menemenlis D., Fukumori I. and Lee T., 2005, Using Green’s functions to calibrate an ocean general circulation model, Mon. Weather Rev., 133, 5, 1224-1240.

  • Moritz H., 1992, Geodetic reference system 1980, Bull Geod., 62, 2, 187-192.

  • Ostanciaux É., Husson L., Choblet G., Robin C. and Pedoja K., 2012, Present-day trends of vertical ground motion along the coast lines, Earth-Sci. Rev., 110, 74-92.

  • Peltier W. R., 2004, Global glacial isostasy and the surface of the Ice-Age Earth: the ICE- 5G (VM2) model and GRACE, Annual Rev. Earth and Planet. Sci., 32, 111-149.

  • Pail R., Goiginger H., Schuh W. D., Höck E., Brockmann J. M., Fecher T., Gruber T., Mayer- Güerr T., Kusche J., Jäggi A. and Rieser D., 2010, Combined satellite gravity field model GOCO01S derived from GOCE and GRACE, Geophys. Res. Lett., 37, L20314.

  • Pail R., Bruinsma S. L., Migliaccio F., Förste C., Goiginger H., Schuh W.D., Höck E., Reguzzoni M., Brockmann J. M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansò F. and Tscherning C. C., 2011, First GOCE gravity field models derived by three different approaches, J Geod., 85, 11, 819-843.

  • Pavlis N. K., Holmes S. A., Kenyon S. C. and Factor J. K., 2012, The development and evaluation of the Earth gravitational model 2008 (EGM2008), J Geophys. Res., 117, B04406.

  • Pugh D. T., 1987, Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists, Chichester, United Kingdom: Wiley.

  • Renganathan V., 2010, Arctic Sea Ice Freeboard Heights from Satellite Altimetry, PhD Thesis, UCGE Report no. 20301, Department of Geomatics Engineering, University of Calgary, Calgary.

  • Rio M. H., Guinehut S. and Larnicol G., 2011, New CNESCLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry and in situ measurements, J Geophys. Res., 116, C07018.

  • Roman D. R. and Weston N. D., 2012, Beyond GEOID12: Implementing a New Vertical Datum for North America. In Proceedings of the FIG Working Week 2012 on “Knowing to manage a territory, protect the environment, evaluate the cultural heritage”, Rome, Italy, May 6-10, 2012 (on-line).

  • Smith D. M. and Murphy J. M., 2007, An objective ocean temperature and salinity analysis using covariances from a global climate model, J Geophys. Res., 112, C02022.

  • Vaníček P., 1991, Vertical Datum and NAVD88, Surv. and Land Info. Syst., 51, 2, 83-86. Véronneau M., Duval R. and Huang J., 2006, Gravimetric geoid model as a vertical datum in Canada, Geom., 60, 2, 165-172.

  • Webb D. J., Coward A. C., de Cuevas B. A. and Gwilliam C. S., 1997, A multiprocessor ocean general circulation model using message passing, J Atmos. Ocean. Tech., 14, 175-182.

  • Woodworth P. L., Hughes C. W., Bingham R. J. and Gruber T., 2012, Towards worldwide height system unification using ocean information, J Geod. Sci. 2, 4, 302-318.


Journal + Issues