Genetic characteristics and follow-up of patients with fatty acid β-oxidation disorders through expanded newborn screening in a Northern Chinese population

Shuting Wang 1 , 2 , Junhong Leng 2 , Chengming Diao 2 , Yuan Wang 3 , 4  and Rongxiu Zheng 5
  • 1 Pediatric Department, Tianjin Medical University General Hospital, Tianjin, PR China
  • 2 Tianjin Women and Children’s Health Center, Tianjin, PR China
  • 3 Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, PR China
  • 4 Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, PR China
  • 5 Pediatric Department, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, PR China
Shuting Wang
  • Pediatric Department, Tianjin Medical University General Hospital, Tianjin, PR China
  • Tianjin Women and Children’s Health Center, Tianjin, PR China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Junhong Leng, Chengming Diao, Yuan Wang
  • Tianjin Medical Laboratory, BGI-Tianjin, BGI-Shenzhen, Tianjin, PR China
  • Binhai Genomics Institute, BGI-Tianjin, BGI-Shenzhen, Tianjin, PR China
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Rongxiu Zheng
  • Corresponding author
  • Pediatric Department, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, 300052, Tianjin, PR China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Background

Fatty acid β-oxidation disorders (FAODs) include more than 15 distinct disorders and have a wide variety of symptoms, usually not evident between episodes of acute decompensation. After the introduction of newborn screening (NBS) using tandem mass spectrometry (MS/MS), early identification of FAODs has become feasible. We analyzed the MS/MS results in Tianjin, China during a six-year period to evaluate the incidence, disease spectrum, and genetic characteristics of FAODs.

Methods

We analyzed the MS/MS results for screening FAODs from May 2013 to December 2018 in Tianjin, China. Infants with positive screening results were confirmed through next-generation sequencing and validated by Sanger sequencing.

Results

A total of 220,443 infants were screened and 25 FAODs patients were identified (1:8,817). Primary carnitine deficiency (PCD) with an incidence rate up to 1:20,040 was the most common disorder among all FAODs. Recurrent mutations of relatively common diseases, like PCD and short-chain acyl-CoA dehydrogenase deficiency (SCADD), were identified. During the follow-up, two patients suffered from sudden death due to carnitine palmitoyl transferase-Ⅱ deficiency (CPT Ⅱ) and very-long-chain acyl-CoA dehydrogenase deficiency (VLCAD).

Conclusion

Our data indicated that FAODs are relatively common in Tianjin and may even cause infant death in certain cases. The elucidated disease spectrum and genetic backgrounds elucidated in this study may contribute to the treatment and prenatal genetic counseling of FAODs.

  • 1.

    Tucci S, Herebian D, Sturm M, Seibt A, Spiekerkoetter U. Tissue-specific strategies of the very-long chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) mouse to compensate a defective fatty acid beta-oxidation. PloS One 2012;7:e45429. https://doi.org/10.1371/journal.pone.0045429.

  • 2.

    Vockley J, Whiteman DA. Defects of mitochondrial beta-oxidation: a growing group of disorders. Neuromuscul Disord 2002;12:235–46. https://doi.org/10.1016/s0960-8966(01)00308-x.

    • Crossref
    • Export Citation
  • 3.

    Garg U, Dasouki M. Expanded newborn screening of inherited metabolic disorders by tandem mass spectrometry: clinical and laboratory aspects. Clin Biochem 2006;39:315–32. https://doi.org/10.1016/j.clinbiochem.2005.12.009.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med 2003;348:2304–12. https://doi.org/10.1056/nejmoa025225.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Moczulski D, Majak I, Mamczur D. An overview of beta-oxidation disorders. Postepy Hig Med Dosw (Online) 2009;63:266–77.

    • PubMed
    • Export Citation
  • 6.

    Gregersen N, Andresen BS, Pedersen CB, Olsen RK, Corydon TJ, Bross P. Mitochondrial fatty acid oxidation defects—remaining challenges. J Inherit Metab Dis 2008;31:643–57. https://doi.org/10.1007/s10545-008-0990-y.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Gregersen N, Andresen BS, Corydon MJ, Corydon TJ, Olsen RK, Bolund L, et al. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship. Hum Mutat 2001;18:169–89. https://doi.org/10.1002/humu.1174.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Spiekerkoetter U. Mitochondrial fatty acid oxidation disorders: clinical presentation of long-chain fatty acid oxidation defects before and after newborn screening. J Inherit Metab Dis 2010;33:527–32. https://doi.org/10.1007/s10545-010-9090-x.

    • Crossref
    • PubMed
    • Export Citation
  • 9.

    Andresen BS, Lund AM, Hougaard DM, Christensen E, Gahrn B, Christensen M, et al. MCAD deficiency in Denmark. Mol Genet Metabol 2012;106:175–88. https://doi.org/10.1016/j.ymgme.2012.03.018.

    • Crossref
    • Export Citation
  • 10.

    Champion MP. An approach to the diagnosis of inherited metabolic disease. Arch Dis Child Educ Pract 2010;95:40–6. https://doi.org/10.1136/adc.2008.151183.

    • Crossref
    • Export Citation
  • 11.

    Niu DM, Chien YH, Chiang CC, Ho HC, Hwu WL, Kao SM, et al. Nationwide survey of extended newborn screening by tandem mass spectrometry in Taiwan. J Inherit Metab Dis 2010;33:S295–305. https://doi.org/10.1007/s10545-010-9129-z.

    • Crossref
    • PubMed
    • Export Citation
  • 12.

    Guo K, Zhou X, Chen X, Wu Y, Liu C, Kong Q. Expanded newborn screening for inborn errors of metabolism and genetic characteristics in a Chinese population. Front Genet 2018;9:122. https://doi.org/10.3389/fgene.2018.00122.

    • Crossref
    • Export Citation
  • 13.

    Huang XW, Yang JB, Tong F, Yang RL, Mao HQ, Zhou XL, et al. [Screening for neonatal inborn errors of metabolism by electrospray ionization-tandem mass spectrometry and follow-up]. Zhonghua er ke za zhi = Chin J Pediatr 2011;49:765–70.

  • 14.

    Lin Y, Zheng Q, Zheng T, Zheng Z, Lin W, Fu Q. Expanded newborn screening for inherited metabolic disorders and genetic characteristics in a southern Chinese population. Clin Chim Acta; Int J Clin Chem 2019;494:106–11. https://doi.org/10.1016/j.cca.2019.03.1622.

    • Crossref
    • Export Citation
  • 15.

    Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics (Oxford, England) 2010;26:589–95. https://doi.org/10.1093/bioinformatics/btp698.

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011;43:491–8. https://doi.org/10.1038/ng.806.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinf 2013;43:11.10.1–.33. https://doi.org/10.1002/0471250953.bi1110s43.

  • 18.

    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010;20:1297–303. https://doi.org/10.1101/gr.107524.110.

    • Crossref
    • PubMed
    • Export Citation
  • 19.

    Shibata N, Hasegawa Y, Yamada K, Kobayashi H, Purevsuren J, Yang Y, et al. Diversity in the incidence and spectrum of organic acidemias, fatty acid oxidation disorders, and amino acid disorders in Asian countries: Selective screening vs. expanded newborn screening. Mol Genet Metab Rep 2018;16:5–10. https://doi.org/10.1016/j.ymgmr.2018.05.003.

    • Crossref
    • PubMed
    • Export Citation
  • 20.

    Lindner M, Hoffmann GF, Matern D. Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J Inherit Metab Dis 2010;33:521–6. https://doi.org/10.1007/s10545-010-9076-8.

    • Crossref
    • PubMed
    • Export Citation
  • 21.

    Han L, Han F, Ye J, Qiu W, Zhang H, Gao X, et al. Spectrum analysis of common inherited metabolic diseases in Chinese patients screened and diagnosed by tandem mass spectrometry. J Clin Lab Anal 2015;29:162–8. https://doi.org/10.1002/jcla.21745.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Sun Y, Wang YY, Jiang T. Clinical features and genotyping of patients with primary carnitine deficiency identified by newborn screening. JPEM (J Pediatr Endocrinol Metab) 2017;30:879–83. https://doi.org/10.1515/jpem-2017-0002.

  • 23.

    Feuchtbaum L, Carter J, Dowray S, Currier RJ, Lorey F. Birth prevalence of disorders detectable through newborn screening by race/ethnicity. Genet Med Off J Am Coll Med Genet 2012;14:937–45. https://doi.org/10.1038/gim.2012.76.

  • 24.

    Kasper DC, Ratschmann R, Metz TF, Mechtler TP, Moslinger D, Konstantopoulou V, et al. The national Austrian newborn screening program - eight years experience with mass spectrometry. past, present, and future goals. Wien Klin Wochenschr 2010;122:607–13. https://doi.org/10.1007/s00508-010-1457-3.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Vilarinho L, Rocha H, Sousa C, Marcao A, Fonseca H, Bogas M, et al. Four years of expanded newborn screening in Portugal with tandem mass spectrometry. J Inherit Metab Dis 2010;33:S133–8. https://doi.org/10.1007/s10545-010-9048-z.

    • Crossref
    • PubMed
    • Export Citation
  • 26.

    Oerton J, Khalid JM, Besley G, Dalton RN, Downing M, Green A, et al. Newborn screening for medium chain acyl-CoA dehydrogenase deficiency in England: prevalence, predictive value and test validity based on 1.5 million screened babies. J Med Screen 2011;18:173–81. https://doi.org/10.1258/jms.2011.011086.

    • Crossref
    • PubMed
    • Export Citation
  • 27.

    Li FY, El-Hattab AW, Bawle EV, Boles RG, Schmitt ES, Scaglia F, et al. Molecular spectrum of SLC22A5 (OCTN2) gene mutations detected in 143 subjects evaluated for systemic carnitine deficiency. Hum Mutat 2010;31:E1632–51. https://doi.org/10.1002/humu.21311.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Yoon YA, Lee DH, Ki CS, Lee SY, Kim JW, Lee YW, et al. SLC22A5 mutations in a patient with systemic primary carnitine deficiency: the first Korean case confirmed by biochemical and molecular investigation. Ann Clin Lab Sci 2012;42:424–8.

  • 29.

    Koizumi A, Nozaki J, Ohura T, Kayo T, Wada Y, Nezu J, et al. Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency. Hum Mol Genet 1999;8:2247–54. https://doi.org/10.1093/hmg/8.12.2247.

    • Crossref
    • Export Citation
  • 30.

    Schimmenti LA, Crombez EA, Schwahn BC, Heese BA, Wood TC, Schroer RJ, et al. Expanded newborn screening identifies maternal primary carnitine deficiency. Mol Genet Metabol 2007;90:441–5. https://doi.org/10.1016/j.ymgme.2006.10.003.

    • Crossref
    • Export Citation
  • 31.

    Kim SH, Park HD, Sohn YB, Park SW, Cho SY, Ji S, et al. Mutations of ACADS gene associated with short-chain acyl-coenzyme A dehydrogenase deficiency. Ann Clin Lab Sci 2011;41:84–8.

    • PubMed
    • Export Citation
  • 32.

    Shirao K, Okada S, Tajima G, Tsumura M, Hara K, Yasunaga S, et al. Molecular pathogenesis of a novel mutation, G108D, in short-chain acyl-CoA dehydrogenase identified in subjects with short-chain acyl-CoA dehydrogenase deficiency. Hum Genet 2010;127:619–28. https://doi.org/10.1007/s00439-010-0822-7.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Gallant NM, Leydiker K, Tang H, Feuchtbaum L, Lorey F, Puckett R, et al. Biochemical, molecular, and clinical characteristics of children with short chain acyl-CoA dehydrogenase deficiency detected by newborn screening in California. Mol Genet Metabol 2012;106:55–61. https://doi.org/10.1016/j.ymgme.2012.02.007.

    • Crossref
    • Export Citation
  • 34.

    van Maldegem BT, Kloosterman SF, Janssen WJ, Augustijn PB, van der Lee JH, Ijlst L, et al. High prevalence of short-chain acyl-CoA dehydrogenase deficiency in the Netherlands, but no association with epilepsy of unknown origin in childhood. Neuropediatrics 2011;42:13–7. https://doi.org/10.1055/s-0031-1275342.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Dessein AF, Fontaine M, Joncquel-Chevalier Curt M, Briand G, Sechter C, Mention-Mulliez K, et al. Fluxomic evidence for impaired contribution of short-chain acyl-CoA dehydrogenase to mitochondrial palmitate beta-oxidation in symptomatic patients with ACADS gene susceptibility variants. Clin Chim Acta; Int J Clin Chem 2017;471:101–6. https://doi.org/10.1016/j.cca.2017.05.026.

    • Crossref
    • Export Citation
  • 36.

    Tajima G, Hara K, Tsumura M, Kagawa R, Okada S, Sakura N, et al. Screening of MCAD deficiency in Japan: 16years' experience of enzymatic and genetic evaluation. Mol Genet Metabol 2016;119:322–8. https://doi.org/10.1016/j.ymgme.2016.10.007.

    • Crossref
    • Export Citation
  • 37.

    Woo HI, Park HD, Lee YW, Lee DH, Ki CS, Lee SY, et al. Clinical, biochemical and genetic analyses in two Korean patients with medium-chain acyl-CoA dehydrogenase deficiency. J Korean Lab Med 2011;31:54–60. https://doi.org/10.3343/kjlm.2011.31.1.54.

    • Crossref
    • Export Citation
  • 38.

    Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56–65. https://doi.org/10.1038/nature11632.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Nochi Z, Olsen RKJ, Gregersen N. Short-chain acyl-CoA dehydrogenase deficiency: from gene to cell pathology and possible disease mechanisms. J Inherit Metab Dis 2017;40:641–55. https://doi.org/10.1007/s10545-017-0047-1.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Baruteau J, Sachs P, Broue P, Brivet M, Abdoul H, Vianey-Saban C, et al. Clinical and biological features at diagnosis in mitochondrial fatty acid beta-oxidation defects: a French pediatric study of 187 patients. J Inherit Metab Dis 2013;36:795–803. https://doi.org/10.1007/s10545-012-9542-6.

    • Crossref
    • PubMed
    • Export Citation
  • 41.

    Iafolla AK, Thompson RJJr., Roe CR. Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children. J Pediatr 1994;124:409–15. https://doi.org/10.1016/s0022-3476(94)70363-9.

    • Crossref
    • PubMed
    • Export Citation
  • 42.

    Chace DH, DiPerna JC, Mitchell BL, Sgroi B, Hofman LF, Naylor EW. Electrospray tandem mass spectrometry for analysis of acylcarnitines in dried postmortem blood specimens collected at autopsy from infants with unexplained cause of death. Clin Chem 2001;47:1166–82. https://doi.org/10.1093/clinchem/47.7.1166.

    • Crossref
    • PubMed
    • Export Citation
  • 43.

    Qian J, Wang X, Liu J, Zhong J, Le Y, Melchior Tellier LCA, et al. Applying targeted next generation sequencing to dried blood spot specimens from suspicious cases identified by tandem mass spectrometry-based newborn screening. JPEM (J Pediatr Endocrinol Metab) 2017;30:979–88. https://doi.org/10.1515/jpem-2017-0003.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Pediatric Endocrinology and Metabolism (JPEM) is the only international journal dedicated exclusively to endocrinology in the neonatal, pediatric and adolescent age groups, and publishes the results of clinical investigations in pediatric endocrinology and basic research. JPEM publishes Review Articles, Original Research, Case Reports, Short Communications and Letters to the Editor.

Search