COVID-19, neutrophil extracellular traps and vascular complications in obstetric practice

  • 1 Department of Obstetrics and Gynecology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • 2 Gynecological Unit of Petrovsky National Research Center of Surgery, Moscow, Russia
  • 3 Department of Gynecology, «Medical Center» LLC, Moscow, Russia
  • 4 Department of Functional and Ultrasound Diagnostics, Almazov National Medical Research Centre, Saint Petersburg, Russia
  • 5 Pathologo-Anatomical Department of City Clinical Hospital, Bakhrushin Brothers Hospital, Moscow, Russia
  • 6 Hematology Department of Thrombosis Center, Tenon University Hospital, Medicine Sorbonne University, Paris, France
  • 7 Hematology Department of Montpellier University, Montpellier, France
Alexander MakatsariyaORCID iD: https://orcid.org/0000-0001-7415-4633, Ekaterina SlukhanchukORCID iD: https://orcid.org/0000-0001-7441-2778, Viktoriya BitsadzeORCID iD: https://orcid.org/0000-0001-8404-1042, Jamilya KhizroevaORCID iD: https://orcid.org/0000-0002-0725-9686, Maria Tretyakova, Valentina TsibizovaORCID iD: https://orcid.org/0000-0001-5888-0774, Andrey DobryakovORCID iD: https://orcid.org/0000-0002-0332-9747, Ismail ElalamyORCID iD: https://orcid.org/0000-0002-9576-1368
  • Department of Obstetrics and Gynecology, I.M.Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
  • Hematology Department of Thrombosis Center, Tenon University Hospital, Medicine Sorbonne University, Paris, France
  • orcid.org/0000-0002-9576-1368
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Jean C. GrisORCID iD: https://orcid.org/0000-0002-9899-9910

Abstract

An issue of the novel coronavirus infection spreading is currently in the first place among others in the list of the international medical community. Due to lack of information, conflicting research findings, multicomponent effect of the virus on the body host, as well as various consequences that the virus triggers in the body, now every medical specialty does study the viral attack pathogenesis. Recent months showed that vascular complications are the most severe in the Coronavirus Disease 2019 (COVID-19) and are the main cause of death in the patients. The mechanisms of vascular complications are complex and affect both the hemostatic system and immune responses, “inflammatory storm”, disorders of the renin-angiotensin-aldosterone system, endotheliopathy, etc.

Due to the leading role of vascular complications in the viral infection pathogenesis, several groups of patients are at extra risk, including pregnant women, patients with a burdened obstetric history, with hereditary thrombophilia and antiphospholipid syndrome, and patients after in vitro fertilization (IVF). In this category of pregnant women, use of low-molecular-weight heparins (LMWH) is particularly important for both prevention of vascular and obstetric complications, and for pathogenetic therapy of COVID-19.

  • 1.

    Hui, DSC, Zumla, A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infect Dis Clin North Am 2019;33:869–89, https://doi.org/10.1016/j.idc.2019.07.001.

    • Crossref
    • PubMed
    • Export Citation
  • 2.

    Azhar, EI, Hui, DSC, Memish, ZA, Drosten, C, Zumla, A. The middle east respiratory syndrome (MERS). Infect Dis Clin North Am 2019;33:891–905, https://doi.org/10.1016/j.idc.2019.08.001.

    • Crossref
    • PubMed
    • Export Citation
  • 3.

    Ge, X-Y, Li, J-L, Yang, X-L, Chmura, AA, Zhu, G, Epstein, JH, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 2013;503:535–8, https://doi.org/10.1038/nature12711.

    • Crossref
    • PubMed
    • Export Citation
  • 4.

    Li, G, Hu, R, Gu, X. A close-up on COVID-19 and cardiovascular diseases. Nutr Metab Cardiovasc Dis 2020;30:1057–60, https://doi.org/10.1016/j.numecd.2020.04.001.

    • Crossref
    • PubMed
    • Export Citation
  • 5.

    Gheblawi, M, Wang, K, Viveiros, A, Nguyen, Q, Zhong, J-C, Turner, AJ, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 2020;126:1456–74, https://doi.org/10.1161/circresaha.120.317015.

    • Crossref
    • PubMed
    • Export Citation
  • 6.

    Li, G, Fan, Y, Lai, Y, Han, T, Li, Z, Zhou, P, et al. Coronavirus infections and immune responses. J Med Virol 2020;92:424–32, https://doi.org/10.1002/jmv.25685.

    • Crossref
    • PubMed
    • Export Citation
  • 7.

    Channappanavar, R, Perlman, S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol 2017;39:529–39, https://doi.org/10.1007/s00281-017-0629-x.

    • Crossref
    • PubMed
    • Export Citation
  • 8.

    Tan, L, Wang, Q, Zhang, D, Ding, J, Huang, Q, Tang, Yi-Q, et al. Lymphopenia predicts disease severity of COVID-19: a descriptive and predictive study. Sig Transduct Target Ther 2020;5:33. https://doi.org/10.1038/s41392-020-0148-4 [Epub ahead of print].

    • Crossref
    • Export Citation
  • 9.

    Cao, X. COVID-19: immunopathology and its implications for therapy. Nat Rev Immunol 2020;20:269–70, https://doi.org/10.1038/s41577-020-0308-3.

    • Crossref
    • PubMed
    • Export Citation
  • 10.

    Xu, X, Chang, XN, Pan, HX, Su, H, Huang, B, Yang, M, et al. [Pathological changes of the spleen in 10 patients with coronavirus disease 2019(COVID-19) by postmortem needle autopsy]. Zhonghua Bing li xue za zhi = Chinese J Pathol 2020;49:576–82, https://doi.org/10.3760/cma.j.cn112151-20200401-00278 [Epub ahead of print].

  • 11.

    Wan, S, Yi, Q, Fan, S, Lv, J, Zhang, X, Guo, L, et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP). 2020;10. (published online Feb 12) Available from: medRxiv: https://doi.org/10.1101/2020.02.10.20021832.

  • 12.

    Antonioli, L, Fornai, M, Pellegrini, C, Blandizzi, C. NKG2A and COVID-19: another brick in the wall. Cell Mol Immunol 2020;17:672–4, https://doi.org/10.1038/s41423-020-0450-7.

    • Crossref
    • PubMed
    • Export Citation
  • 13.

    Khizroeva, JH, Makatsariya, AD, Bitsadze, VO, Tretyakova, MV, Slukhanchuk, EV, Elalamy, I, et al. Laboratory monitoring of COVID-19 patients and the significance of coagulopathy markers. Obstet, Gynecol Reproduct (In Russ.) 2020;14:132, https://doi.org/10.17749/2313-7347.141 [Epub ahead of print].

  • 14.

    Lippi, G, Plebani, M, Henry, BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. Clin Chim Acta 2020;506:145–8, https://doi.org/10.1016/j.cca.2020.03.022.

    • Crossref
    • PubMed
    • Export Citation
  • 15.

    Wilson, JG, Calfee, CS. ARDS subphenotypes: understanding a heterogeneous syndrome. Crit Care 2020;24:102, https://doi.org/10.1186/s13054-020-2778-x [Epub ahead of print].

    • Crossref
    • PubMed
    • Export Citation
  • 16.

    Fanelli, V, Fiorentino, M, Cantaluppi, V, Gesualdo, L, Stallone, G, Ronco, C, et al. Acute kidney injury in SARS-CoV-2 infected patients. Crit Care 2020;24:155, https://doi.org/10.1186/s13054-020-02872-z.

    • Crossref
    • PubMed
    • Export Citation
  • 17.

    Engelbrecht, C, Sardinha, LR, Rizzo, LV. Cytokine and chemokine concentration in the tear of patients with age-related cataract. Curr Eye Res 2020:1–6, https://doi.org/10.1080/02713683.2020.1715445 [Epub ahead of print].

    • PubMed
    • Export Citation
  • 18.

    Crisci, CD, Ardusso, LRF, Mossuz, A, Müller, L. A precision medicine approach to SARS-CoV-2 pandemic management. Curr Treat Options Allergy 2020;8:1–19. https://doi.org/10.1007/s40521-020-00258-8 [Epub ahead of print].

  • 19.

    Makatsariya, AD, Grigoreva, KN, Mingalimov, MA, Bitsadze, VO, Khizroeva, JK, Tretyakova, MV, et al. Coronavirus disease (COVID-19) and disseminated intravascular coagulation syndrome. Obstet, Gynecol Reproduct (In Russ.) 2020;14:123–31, https://doi.org/10.17749/2313-7347.132 [Epub ahead of print].

    • Crossref
    • Export Citation
  • 20.

    Yi, ES, Cecchini, MJ, Bois, MC. Pathologists in pursuit of the COVID-19 culprit. Lancet Infectious Dis 2020, https://doi.org/10.1016/s1473-3099(20)30449-7 [Epub ahead of print].

  • 21.

    Hanley, B, Lucas, SB, Youd, E, Swift, B, Osborn, M. Autopsy in suspected COVID-19 cases. J Clin Pathol 2020;73:239–42, https://doi.org/10.1136/jclinpath-2020-206522.

    • Crossref
    • PubMed
    • Export Citation
  • 22.

    Schaller, T, Hirschbühl, K, Burkhardt, K, Braun, G, Trepel, M, Märkl, B, et al. Postmortem examination of patients with COVID-19. J Am Med Assoc 2020;323:2518–20. https://doi.org/10.1001/jama.2020.8907 [Epub ahead of print].

    • Crossref
    • Export Citation
  • 23.

    Barnes, BJ, Adrover, JM, Baxter-Stoltzfus, A, Borczuk, A, Cools-Lartigue, J, Crawford, JM, et al. Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 2020;217:e20200652. https://doi.org/10.1084/jem.20200652.

    • PubMed
    • Export Citation
  • 24.

    Brinkmann, V, Reichard, U, Goosmann, C, Fauler, B, Uhlemann, Y, Weiss, DS, et al. Neutrophil extracellular traps kill bacteria. Science 2004;303:1532–5, https://doi.org/10.1126/science.1092385.

    • Crossref
    • PubMed
    • Export Citation
  • 25.

    Kambas, K, Mitroulis, I, Ritis, K. The emerging role of neutrophils in thrombosis—the journey of TF through NETs. Front Immunol 2012;3:385, https://doi.org/10.3389/fimmu.2012.00385.

    • PubMed
    • Export Citation
  • 26.

    Schönrich, G, Raftery, MJ. Neutrophil extracellular traps go viral. Front Immunol 2016;7:366, https://doi.org/10.3389/fimmu.2016.00366.

    • PubMed
    • Export Citation
  • 27.

    Adrover, JM, Aroca-Crevillén, A, Crainiciuc, G, Ostos, F, Rojas-Vega, Y, Rubio-Ponce, A, et al. Programmed ‘disarming’ of the neutrophil proteome reduces the magnitude of inflammation. Nat Immunol 2020;21:135–44, https://doi.org/10.1038/s41590-019-0571-2.

    • Crossref
    • PubMed
    • Export Citation
  • 28.

    Porto, BN, Stein, RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol 2016;7:311, https://doi.org/10.3389/fimmu.2016.00311.

    • PubMed
    • Export Citation
  • 29.

    Noubouossie, DF, Whelihan, MF, Yu, YB, Sparkenbaugh, E, Pawlinski, R, Monroe, DM, et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017;129:1021–9, https://doi.org/10.1182/blood-2016-06-722298.

    • Crossref
    • PubMed
    • Export Citation
  • 30.

    Nakazawa, D, Kumar, SV, JMarschner, J, Desai, J, Holderied, A, Rath, L, et al. Histones and neutrophil extracellular traps enhance tubular necrosis and remote organ injury in ischemic AKI. JASN 2017;28:1753–68, https://doi.org/10.1681/asn.2016080925.

    • Crossref
    • PubMed
    • Export Citation
  • 31.

    Giaglis, S, Stoikou, M, Sur Chowdhury, C, Schaefer, G, Grimolizzi, F, Rossi, SW, et al. Multimodal regulation of NET formation in pregnancy: progesterone antagonizes the pro-NETotic effect of estrogen and G-CSF. Front Immunol 2016;7:565, https://doi.org/10.3389/fimmu.2016.00565.

    • PubMed
    • Export Citation
  • 32.

    Mizugishi, K, Yamashita, K. Neutrophil extracellular traps are critical for pregnancy loss in sphingosine kinase-deficient mice on 129Sv/C57BL/6 background. FASEB J 2017;31:5577–91, https://doi.org/10.1096/fj.201700399RR.

    • Crossref
    • PubMed
    • Export Citation
  • 33.

    Marder, W, Knight, JS, Kaplan, MJ, Somers, EC, Zhang, X, O’Dell, AA, et al. Placental histology and neutrophil extracellular traps in lupus and pre-eclampsia pregnancies. Lupus Sci Med 2016;3:e000134.https://doi.org/10.1136/lupus-2015-000134`.

    • PubMed
    • Export Citation
  • 34.

    Armstrong, SM, Darwish, I, Lee, WL. Endothelial activation and dysfunction in the pathogenesis of influenza A virus infection. Virulence 2013;4:537–42, https://doi.org/10.4161/viru.25779.

    • Crossref
    • PubMed
    • Export Citation
  • 35.

    Gavins, FN, Li, G, Russell, J, Perretti, M, Granger, DN. Microvascular thrombosis and CD40/CD40L signaling. J Thromb Haemost 2011;9:574–81, https://doi.org/10.1111/j.1538-7836.2010.04176.x.

    • Crossref
    • PubMed
    • Export Citation
  • 36.

    Amirkhosravi, A, Meyer, TV, Robles-Carillo, L, Davila, M, Langer, F, Desai, H, et al. Mechanism of thrombocytopenia induced by anti-CD40 ligand immune complexes and the prevalence of CD40 ligand autoantibodies in patients with thrombotic autoimmune disorders. Blood 2008;112:2857, https://doi.org/10.1182/blood.v112.11.2857.2857.

    • Crossref
    • Export Citation
  • 37.

    Zhang, Y, Xiao, M, Zhang, S, Xia, P, Cao, W, Jiang, W, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med 2020;382:e38https://doi.org/10.1056/NEJMc2007575 [Epub ahead of print].

    • Crossref
    • PubMed
    • Export Citation
  • 38.

    Huang, C, Wang, Y, Li, X, Ren, L, Zhao, J, Hu, Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506, https://doi.org/10.1016/s0140-6736(20)30183-5.

    • Crossref
    • PubMed
    • Export Citation
  • 39.

    Tang, N, Li, D, Wang, X, Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020;18:844–7, https://doi.org/10.1111/jth.14768.

    • Crossref
    • PubMed
    • Export Citation
  • 40.

    Thachil, J, Tang, N, Gando, S, Falanga, A, Cattaneo, M, Levi, M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost 2020;18:1032–36, https://doi.org/10.1111/jth.14810.

  • 41.

    Wendelboe, AM, Raskob, GE. Global burden of thrombosis: epidemiologic aspects. Circ Res 2016;118:1340–7, https://doi.org/10.1161/circresaha.115.306841.

    • Crossref
    • PubMed
    • Export Citation
  • 42.

    Burwen, DR, Wu, C, Cirillo, D, Rossouw, J, Margolis, KL, Limacher, M, et al. Venous thromboembolism incidence, recurrence, and mortality based on women’s health initiative data and medicare claims. Thromb Res 2017;150:78–85, https://doi.org/10.1016/j.thromres.2016.11.015.

    • Crossref
    • PubMed
    • Export Citation
  • 43.

    Zhao, X, Jiang, Y, Zhao, Y, Xi, H, Liu, C, Qu, F, et al. Analysis of the susceptibility to COVID-19 in pregnancy and recommendations on potential drug screening. Eur J Clin Microbiol Infect Dis 2020;39:1209–20, https://doi.org/10.1007/s10096-020-03897-6.

    • Crossref
    • PubMed
    • Export Citation
  • 44.

    Di Mascio, D, Khalil, A, Saccone, G, Rizzo, G, Buca, D, Liberati, D, et al. Outcome of coronavirus spectrum infections (SARS, MERS, COVID 1–19) during pregnancy: a systematic review and meta-analysis. Am J Obstet Gynecol MFM 2020;2:100107https://doi.org/10.1016/j.ajogmf.2020.100107 [Epub ahead of print].

  • 45.

    Juan, J, Gil, MM, Rong, Z, Zhang, Y, Yang, H, Poon, LC, et al. Effect of coronavirus disease 2019 (COVID‐19) on maternal, perinatal and neonatal outcome: systematic review. Ultrasound Obstet Gynecol 2020;56:15–27. https://doi.org/10.1002/uog.22088 [Epub ahead of print].

    • Crossref
    • PubMed
    • Export Citation
  • 46.

    Schwartz, DA. An analysis of 38 pregnant women with COVID-19, their newborn infants, and maternal-fetal transmission of SARS-CoV-2: maternal coronavirus infections and pregnancy outcomes. Arch Pathol Lab Med 2020;144:799–805, https://doi.org/10.5858/arpa.2020-0901-sa.

    • Crossref
    • Export Citation
  • 47.

    Mathur, S, Maheshwarappa, RP, Fouladirad, S, Metwally, O, Mukherjee, P, Lin, AW, et al. Emergency imaging in pregnancy and lactation. Canadian Ass Radiol J 2020;71:396–02, 0846537120906482.

    • Crossref
    • Export Citation
  • 48.

    Chartier, AL, Bouvier, MJ, McPherson, DR, Stepenosky, JE, Taysom, DA, Marks, RM. The safety of maternal and fetal MRI at 3 T. Am J Roentgenol 2019;213:1170–3, https://doi.org/10.2214/ajr.19.21400.

    • Crossref
    • Export Citation
  • 49.

    Juusela, A, Nazir, M, Gimovsky, M. Two cases of COVID-19 related cardiomyopathy in pregnancy. Amer J Obstet Gynecol MFM 2020;2:100113.

  • 50.

    Pierce-Williams, RAM, Burd, J, Felder, L, Khoury, R, Bernstein, PS, Avila, K, et al. Clinical course of severe and critical COVID-19 in hospitalized pregnancies: a US cohort study. Am J Obstet Gynecol MFM 2020;2:100134 https://doi.org/10.1016/j.ajogmf.2020.100134 [published online ahead of print].

  • 51.

    Poon, LC, Yang, H, Kapur, A, Melamed, N, Dao, B, Divakar, H, et al. Global interim guidance on coronavirus disease 2019 (COVID‐19) during pregnancy and puerperium from FIGO and allied partners: information for healthcare professionals. Int J Gynecol Obstet 2020;149:273–86, https://doi.org/10.1002/ijgo.13156.

    • Crossref
    • Export Citation
  • 52.

    Rasmussen, SA, Smulian, JC, Lednicky, JA, Wen, TS, Jamieson, DJ. Coronavirus disease 2019 (COVID-19) and pregnancy: what obstetricians need to know. Am J Obstet Gynecol 2020;222:415–26, https://doi.org/10.1016/j.ajog.2020.02.017.

    • Crossref
    • PubMed
    • Export Citation
  • 53.

    Di Renzo, GC, Makatsariya, AD, Tsibizova, VI, Capanna, F, Rasero, B, Komlichenko, EV, et al. Obstetric and perinatal care units functioning during the COVID-19 pandemic. Annal Russ Acad Med Sci 2020;75:83–92, https://doi.org/10.15690/vramn1324.

    • Crossref
    • Export Citation
  • 54.

    Poon, LC, Yang, H, Lee, JCS, Copel, JA, Leung, TY, Zhang, Y, et al. ISUOG interim guidance on 2019 novel coronavirus infection during pregnancy and puerperium: information for healthcare professionals. Ultrasound Obstet Gynecol 2020;55:700–8, https://doi.org/10.1002/uog.22013.

    • Crossref
    • PubMed
    • Export Citation
  • 55.

    Bauer, ME, Bernstein, K, Dinges, E, Delgado, C, El-Sharawi, N, Sultan, P, et al. Obstetric anesthesia during the COVID-19 pandemic. Anesth Analg 2020;131:7–15, https://doi.org/10.1213/ane.0000000000004856.

    • Crossref
    • PubMed
    • Export Citation
  • 56.

    Elwood, C, Boucoiran, I, VanSchalkwyk, J, Money, D, Yudin, M, Poliquin, V. SOGC committee opinion – COVID-19 in pregnancy. J Obstet Gynaecol Can 2020, PMCID: PMC7118696, https://doi.org/10.1016/j.jogc.2020.03.012 [Epub ahead of print].

  • 57.

    Olausson, N, Discacciati, A, Nyman, AI, Lundberg, F, Hovatta, O, Westerlund, E, et al. Incidence of pulmonary and venous thromboembolism in pregnancies after in vitro fertilization with fresh respectively frozen-thawed embryo transfer: nationwide cohort study. J Thromb Haemost 2020, https://doi.org/10.1111/jth.14840 [Epub ahead of print].

    • PubMed
    • Export Citation
  • 58.

    Lurie, N, Saville, M, Hatchett, R, Halton, J. Developing covid-19 vaccines at pandemic speed. N Engl J Med 2020;382:1969–73, https://doi.org/10.1056/nejmp2005630.

    • Crossref
    • PubMed
    • Export Citation
  • 59.

    Zhang, W, Zhao, Y, Zhang, F, Wang, Q, Li, T, Liu, Z, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the perspectives of clinical immunologists from China. Clin Immunol 2020;214:108393.https://doi.org/10.1016/j.clim.2020.108393.

    • PubMed
    • Export Citation
  • 60.

    COVID-19 Treatment Guidelines Panel. Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of Health; 2020. Available from: https://www.covid19treatmentguidelines.nih.gov/ [Accessed 16 June 2020].

  • 61.

    De Clercq, E, Li, G. Approved antiviral drugs over the past 50 years. Clin Microbiol Rev 2016;29:695–747, https://doi.org/10.1128/cmr.00102-15.

    • Crossref
    • PubMed
    • Export Citation
  • 62.

    Geleris, J, Sun, Y, Platt, J, Zucker, J, Baldwin, M, Hripcsak, G, et al. Observational study of hydroxychloroquine in hospitalized patients with covid-19. N Engl J Med 2020;382:2411–8. https://doi.org/10.1056/NEJMoa2012410 [Epub ahead of print].

    • Crossref
    • PubMed
    • Export Citation
  • 63.

    Tang, N, Bai, H, Chen, X, Gong, J, Li, D, Sun, Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18:1094–9. https://doi.org/10.1111/jth.14817 [Epub ahead of print].

    • Crossref
    • PubMed
    • Export Citation
  • 64.

    Giannis, D, Ziogas, IA, Gianni, P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol 2020;9:104362https://doi.org/10.1016/j.jcv.2020.104362.

  • 65.

    Coronavirus (COVID-19) Infection in Pregnancy. Version 10.1: updated Friday 19 June 2020. Guidance for Healthcare Professionals on Coronavirus (COVID-19) Infection in Pregnancy. Royal College of Midwives, Royal College of Paediatrics and Child Health, Public Health England and Health Protection Scotland; 2020. Available from: https://www.rcog.org.uk/globalassets/documents/guidelines/2020-06-18-coronavirus-covid-19-infection-in-pregnancy.pdf [Accessed 19 June 2020].

  • 66.

    Casu, B, Vlodavsky, I, Sanderson, RD. Non-anticoagulant heparins and inhibition of cancer. Pathophysiol Haemost Thromb 2008;36:195–203, https://doi.org/10.1159/000175157.

    • PubMed
    • Export Citation
  • 67.

    Mummery, RS, Rider, CC. Characterization of the heparin-binding properties of IL-6. J Immunol 2000;173165:47555671–9, https://doi.org/10.4049/jimmunol.165.10.5671.

  • 68.

    Schoen, P, Lindhout, T, Franssen, J, Hemker, HC. Low molecular weight heparin-catalyzed inactivation of factor Xa and thrombin by antithrombin III-effect of platelet factor 4. Thromb Haemost 1991;66:435–41, https://doi.org/10.1055/s-0038-1646434.

    • Crossref
    • PubMed
    • Export Citation
  • 69.

    Fiore, MM, Mackie, IM. Mechanism of low-molecular-weight heparin reversal by platelet factor 4. Thromb Res 2009;124:149–55, https://doi.org/10.1016/j.thromres.2008.12.047.

    • Crossref
    • PubMed
    • Export Citation
  • 70.

    Klejna, K, Naumnik, B, Koc-Żórawska, E, Myśliwiec, M. Effect of unfractionated and low-molecular-weight heparin on OPG, sRANKL, and von Willebrand factor concentrations during hemodialysis. Clin Appl Thromb Hemost 2014;20:433–41, https://doi.org/10.1177/1076029612463424.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The Journal of Perinatal Medicine is a truly international forum covering the entire field of perinatal medicine. It is an essential news source for all those obstetricians, neonatologists, perinatologists and allied health professionals who wish to keep abreast of progress in perinatal and related research.

Search