Uniqueness results for the Minkowski problem extended to hedgehogs

Yves Martinez-Maure 1
  • 1 Universités Paris 4 et Paris 7

Abstract

The classical Minkowski problem has a natural extension to hedgehogs, that is to Minkowski differences of closed convex hypersurfaces. This extended Minkowski problem is much more difficult since it essentially boils down to the question of solutions of certain Monge-Ampère equations of mixed type on the unit sphere $\mathbb{S}^n $ of ℝn+1. In this paper, we mainly consider the uniqueness question and give first results.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Alexandrov A.D., On uniqueness theorems for closed surfaces, Dokl. Akad. Nauk SSSR, 1939, 22, 99–102 (in Russian)

  • [2] Alexandrov A.D., On the curvature of surfaces, Vestnik Leningrad. Univ., 1966, 21(19), 5–11 (in Russian)

  • [3] Berger M., A Panoramic View of Riemannian Geometry, Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-642-18245-7

  • [4] Cheng S.Y., Yau S.T., On the regularity of the solution of the n-dimensional Minkowski problem, Comm. Pure Appl. Math., 1976, 29(5), 495–516 http://dx.doi.org/10.1002/cpa.3160290504

  • [5] Koutroufiotis D., On a conjectured characterization of the sphere, Math. Ann., 1973, 205(3), 211–217 http://dx.doi.org/10.1007/BF01349231

  • [6] Langevin R., Levitt G., Rosenberg H., Hérissons et multihérissons (enveloppes parametrées par leur application de Gauss), Banach Center Publ., 1988, 20, 245–253

  • [7] Lin C.S., The local isometric embedding in ℝ3 of 2-dimensional Riemannian manifolds with nonnegative curvature, J. Differential Geom., 1985, 21(2), 213–230

  • [8] Martinez-Maure Y., Hedgehogs of constant width and equichordal points, Ann. Polon. Math., 1997, 67(3), 285–288

  • [9] Martinez-Maure Y., Indice d’un hérisson: étude et applications, Publ. Mat., 2000, 44(1), 237–255

  • [10] Martinez-Maure Y., Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris, 2001, 332(1), 41–44

  • [11] Martinez-Maure Y., Hedgehogs and zonoids, Adv. Math., 2001, 158(1), 1–17 http://dx.doi.org/10.1006/aima.2000.1943

  • [12] Martinez-Maure Y., Théorie des hérissons et polytopes, C. R. Acad. Sci. Paris, 2003, 336(3), 241–244

  • [13] Martinez-Maure Y., Geometric study of Minkowski differences of plane convex bodies, Canad. J. Math., 2006, 58(6), 600–624 http://dx.doi.org/10.4153/CJM-2006-025-x

  • [14] Martinez-Maure Y., New notion of index for hedgehogs of ℝ3 and applications, European J. Combin., 2010, 31(4), 1037–1049 http://dx.doi.org/10.1016/j.ejc.2009.11.015

  • [15] Minkowski H., Volumen und Oberfläche, Math. Ann., 1903, 57(4), 447–495 http://dx.doi.org/10.1007/BF01445180

  • [16] Panina G., New counterexamples to A.D. Alexandrov’s hypothesis, Adv. Geom., 2005, 5(2), 301–317 http://dx.doi.org/10.1515/advg.2005.5.2.301

  • [17] Pogorelov A.V., The Minkowski Multidimensional Problem, Scripta Series in Mathematics, John Wiley & Sons, New York-Toronto-London, 1978

  • [18] Schneider R., Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993 http://dx.doi.org/10.1017/CBO9780511526282

  • [19] Stoker J.J., Differential Geometry, Wiley Classics Lib., John Wiley & Sons, New York, 1989

  • [20] Zuily C., Existence locale de solutions C ∞ pour des équations de Monge-Ampère changeant de type, Comm. Partial Differential Equations, 1989, 14(6), 691–697 http://dx.doi.org/10.1080/03605308908820627

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search