Note on the concentration-compactness principle for generalized Moser-Trudinger inequalities

Robert Černý 1
  • 1 Charles University

Abstract

Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the exponent concerning the Concentration-Compactness Principle for the embedding of the Orlicz-Sobolev space W 01 L n logα L(Ω) into the Orlicz space corresponding to a Young function that behaves like exp t n/(n−1−α) for large t. We also give the result for the case of the embedding into double and other multiple exponential spaces.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Adimurthi, Existence of positive solutions of the semilinear Dirichlet problem with critical growth for the n-Laplacian, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1990, 17(3), 393–413

  • [2] Ambrosetti A., Rabinowitz P.H., Dual variational methods in critical point theory and applications, J. Functional Analysis, 1973, 14(4), 349–381 http://dx.doi.org/10.1016/0022-1236(73)90051-7

  • [3] Brézis H., Nirenberg L., Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math., 1983, 36(4), 437–477 http://dx.doi.org/10.1002/cpa.3160360405

  • [4] Černý R., Concentration-Compactness Principle for embedding into multiple exponential spaces, Math. Inequal. Appl. (in press), preprint available at http://files.ele-math.com/preprints/mia-2330-pre.pdf

  • [5] Černý R., Generalized n-Laplacian: quasilinear nonhomogenous problem with the critical growth, Nonlinear Anal., 2011, 74(11), 3419–3439 http://dx.doi.org/10.1016/j.na.2011.03.002

  • [6] Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3

  • [7] Černý R., Gurka P., Hencl S., Concentration-compactness principle for generalized Trudinger inequalities, Z. Anal. Anwend., 2011, 30(3), 355–375

  • [8] Černý R., Mašková S., A sharp form of an embedding into multiple exponential spaces, Czechoslovak Math. J., 2010, 60(3), 751–782 http://dx.doi.org/10.1007/s10587-010-0048-9

  • [9] Černý R., Mašková S., On generalization of Moser’s theorem in the critical case, Math. Inequal. Appl., 2010, 13(4), 785–802

  • [10] Cianchi A., A sharp embedding theorem for Orlicz-Sobolev spaces, Indiana Univ. Math. J., 1996, 45(1), 39–65 http://dx.doi.org/10.1512/iumj.1996.45.1958

  • [11] Edmunds D.E., Gurka P., Opic B., Double exponential integrability of convolution operators in generalized Lorentz-Zygmund spaces, Indiana Univ. Math. J., 1995, 44(1), 19–43 http://dx.doi.org/10.1512/iumj.1995.44.1977

  • [12] Edmunds D.E., Gurka P., Opic B., Double exponential integrability, Bessel potentials and embedding theorems, Studia Math., 1995, 115(2), 151–181

  • [13] Edmunds D.E., Gurka P., Opic B., Sharpness of embeddings in logarithmic Bessel potential spaces, Proc. Roy. Soc. Edinburgh Sect. A, 1996, 126(5), 995–1009 http://dx.doi.org/10.1017/S0308210500023210

  • [14] Edmunds D.E., Gurka P., Opic B., On embeddings of logarithmic Bessel potential spaces, J. Funct. Anal., 1997, 146(1), 116–150 http://dx.doi.org/10.1006/jfan.1996.3037

  • [15] Edmunds D.E., Gurka P., Opic B., Norms of embeddings of logarithmic Bessel potential spaces, Proc. Amer. Math. Soc., 1998, 126(8), 2417–2425 http://dx.doi.org/10.1090/S0002-9939-98-04327-5

  • [16] Edmunds D.E., Krbec M., Two limiting cases of Sobolev imbeddings, Houston J. Math., 1995, 21(1), 119–128

  • [17] Fusco N., Lions P.-L., Sbordone C., Sobolev imbedding theorems in borderline cases, Proc. Amer. Math. Soc., 1996, 124(2), 561–565 http://dx.doi.org/10.1090/S0002-9939-96-03136-X

  • [18] Hencl S., A sharp form of an embedding into exponential and double exponential spaces, J. Funct. Anal., 2003, 204(1), 196–227 http://dx.doi.org/10.1016/S0022-1236(02)00172-6

  • [19] Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201 http://dx.doi.org/10.4171/RMI/6

  • [20] Moser J., A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., 1971, 20(11), 1077–1092 http://dx.doi.org/10.1512/iumj.1971.20.20101

  • [21] Opic B., Pick L., On generalized Lorentz-Zygmund spaces, Math. Inequal. Appl., 1999, 2(3), 391–467

  • [22] Rao M.M., Ren Z.D., Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, New York, 1991

  • [23] Talenti G., Inequalities in rearrangement invariant function spaces, In: Nonlinear Analysis, Function Spaces and Applications, 5, Prometheus, Prague, 1994, 177–230

  • [24] Trudinger N.S., On imbeddings into Orlicz spaces and some applications, J. Math. Mech., 1967, 17(5), 473–484

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search