Quasi-particle fermionic formulas for (k, 3)-admissible configurations

Miroslav Jerković 1  and Mirko Primc 2
  • 1 University of Zagreb
  • 2 University of Zagreb

Abstract

We construct new monomial quasi-particle bases of Feigin-Stoyanovsky type subspaces for the affine Lie algebra sl(3;ℂ)∧ from which the known fermionic-type formulas for (k, 3)-admissible configurations follow naturally. In the proof we use vertex operator algebra relations for standard modules and coefficients of intertwining operators.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ardonne E., Kedem R., Stone M., Fermionic characters and arbitrary highest-weight integrable bs \(\widehat{\mathfrak{s}l}_{r + 1}\) -modules, Comm. Math. Phys., 2006, 264(2), 427–464 http://dx.doi.org/10.1007/s00220-005-1486-3

  • [2] Baranović I., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for D 4(1), Comm. Algebra, 2011, 39(3), 1007–1051 http://dx.doi.org/10.1080/00927871003639329

  • [3] Calinescu C., Principal subspaces of higher-level standard \(\widehat{\mathfrak{s}\mathfrak{l}(3)}\) -modules, J. Pure Appl. Algebra, 2007, 210(2), 559–575 http://dx.doi.org/10.1016/j.jpaa.2006.10.018

  • [4] Calinescu C., Intertwining vertex operators and certain representations of \(\widehat{\mathfrak{s}\mathfrak{l}(n)}\) , Commun. Contemp. Math., 2008, 10(1), 47–79 http://dx.doi.org/10.1142/S0219199708002703

  • [5] Calinescu C., Lepowsky J., Milas A., Vertex-algebraic structure of the principal subspaces of certain A 1(1)-modules I: Level one case, Internat. J. Math., 2008, 19(1), 71–92 http://dx.doi.org/10.1142/S0129167X08004571

  • [6] Calinescu C., Lepowsky J., Milas A., Vertex-algebraic structure of the principal subspaces of certain A 1(1)-modules II: Higher-level case, J. Pure Appl. Algebra, 2008, 212(8), 1928–1950 http://dx.doi.org/10.1016/j.jpaa.2008.01.003

  • [7] Calinescu C., Lepowsky J., Milas A., Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E, J. Algebra, 2010, 323(1), 167–192 http://dx.doi.org/10.1016/j.jalgebra.2009.09.029

  • [8] Capparelli S., Lepowsky J., Milas A., The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math., 2003, 5(6), 947–966 http://dx.doi.org/10.1142/S0219199703001191

  • [9] Capparelli S., Lepowsky J., Milas A., The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J., 2006, 12(3), 379–397 http://dx.doi.org/10.1007/s11139-006-0150-7

  • [10] Dong C., Lepowsky J., Generalized Vertex Algebras and Relative Vertex Operators, Progr. Math., 112, Birkhäuser, Boston, 1993 http://dx.doi.org/10.1007/978-1-4612-0353-7

  • [11] Feigin B., Jimbo M., Loktev S., Miwa T., Mukhin E., Bosonic formulas for (k; l)-admissible partitions, Ramanujan J., 2003, 7(4), 485–517, 519–530 http://dx.doi.org/10.1023/B:RAMA.0000012430.68976.c0

  • [12] Feigin B., Jimbo M., Miwa T., Mukhin E., Takeyama Y., Fermionic formulas for (k; 3)-admissible configurations, Publ. Res. Inst. Math. Sci., 2004, 40(1), 125–162 http://dx.doi.org/10.2977/prims/1145475968

  • [13] Feigin B., Jimbo M., Miwa T., Mukhin E., Takeyama Y., Particle content of the (k; 3)-configurations, Publ. Res. Inst. Math. Sci., 2004, 40(1), 163–220 http://dx.doi.org/10.2977/prims/1145475969

  • [14] Frenkel I.B., Kac V.G., Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 1980, 62(1), 23–66 http://dx.doi.org/10.1007/BF01391662

  • [15] Frenkel I., Lepowsky J., Meurman A., Vertex Operator Algebras and the Monster, Pure Appl. Math., 134, Academic Press, Boston, 1988

  • [16] Georgiev G., Combinatorial constructions of modules for infinite-dimensional Lie algebras I. Principal subspace, J. Pure Appl. Algebra, 1996, 112(3), 247–286 http://dx.doi.org/10.1016/0022-4049(95)00143-3

  • [17] Jerković M., Recurrence relations for characters of affine Lie algebra A ℓ(1), J. Pure Appl. Algebra, 2009, 213(6), 913–926 http://dx.doi.org/10.1016/j.jpaa.2008.10.001

  • [18] Jerković M., Recurrences and characters of Feigin-Stoyanovsky’s type subspaces, In: Vertex Operator Algebras and Related Areas, Contemp. Math., 497, American Mathematical Society, Providence, 2009, 113–123

  • [19] Jerković M., Character formulas for Feigin-Stoyanovsky’s type subspaces of standard sl(3, ℂ)∧-modules, preprint avaliable at http://arxiv.org/abs/1105.2927

  • [20] Kac V.G., Infinite-Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511626234

  • [21] Lepowsky J., Wilson R.L., The structure of standard modules I. Universal algebras and the Rogers-Ramanujan identities, Invent. Math., 1984, 77(2), 199–290; The structure of standard modules II. The case A 1(1), principal gradation, Invent. Math., 1985, 79(5), 417–442 http://dx.doi.org/10.1007/BF01388447

  • [22] Primc M., Vertex operator construction of standard modules for A n(1), Pacific J. Math., 1994, 162(1), 143–187

  • [23] Primc M., (k; r)-admissible configurations and intertwining operators, In: Lie Algebras, Vertex Operator Algebras and their Applications, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 425–434

  • [24] Segal G., Unitary representations of some infinite-dimensional groups, Commun. Math. Phys., 1981, 80(3), 301–342 http://dx.doi.org/10.1007/BF01208274

  • [25] Stoyanovsky A.V., Feigin B.L., Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funktsional. Anal. i Prilozhen., 1994, 28(1), 68–90 (in Russian) http://dx.doi.org/10.1007/BF01079010

  • [26] Trupčević G., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \(\mathop {\mathfrak{s}l}\limits^ \sim (\ell + 1,\mathbb{C})\) -modules, J. Algebra, 2009, 322(10), 3744–3774 http://dx.doi.org/10.1016/j.jalgebra.2009.07.024

  • [27] Trupčević G., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 1 standard modules for \(\mathop {\mathfrak{s}l}\limits^ \sim (\ell + 1,\mathbb{C})\) , Comm. Algebra, 2010, 38(10), 3913–3940 http://dx.doi.org/10.1080/00927870903366827

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search