Schreier type theorems for bicrossed products

Ana Agore 1  and Gigel Militaru 2
  • 1 Vrije Universiteit Brussel
  • 2 University of Bucharest

Abstract

We prove that the bicrossed product of two groups is a quotient of the pushout of two semidirect products. A matched pair of groups (H;G; α; β) is deformed using a combinatorial datum (σ; v; r) consisting of an automorphism σ of H, a permutation v of the set G and a transition map r: G → H in order to obtain a new matched pair (H; (G; *); α′, β′) such that there exists a σ-invariant isomorphism of groups H α⋈β G ≅H α′⋈β′ (G, *). Moreover, if we fix the group H and the automorphism σ ∈ Aut H then any σ-invariant isomorphism H α⋈β G ≅ H α′⋈β′ G′ between two arbitrary bicrossed product of groups is obtained in a unique way by the above deformation method. As applications two Schreier type classification theorems for bicrossed products of groups are given.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Agore A.L., Chirvăsitu A., Ion B., Militaru G., Bicrossed products for finite groups, Algebr. Represent. Theory, 2009, 12(2–5), 481–488 http://dx.doi.org/10.1007/s10468-009-9145-6

  • [2] Aguiar M., Andruskiewitsch N., Representations of matched pairs of groupoids and applications to weak Hopf algebras, In: Algebraic Structures and their Representations, Contemp. Math., 376, American Mathematical Society, Providence, 2005, 127–173

  • [3] Amberg B., Franciosi S., de Giovanni F., Products of Groups, Oxford Math. Monogr., Oxford University Press, New York, 1992

  • [4] Baaj S., Skandalis G., Vaes S., Measurable Kac cohomology for bicrossed products, Trans. Amer. Math. Soc., 2005, 357(4), 1497–1524 http://dx.doi.org/10.1090/S0002-9947-04-03734-1

  • [5] Baumeister B., Factorizations of primitive permutation groups, J. Algebra, 1997, 194(2), 631–653 http://dx.doi.org/10.1006/jabr.1997.7027

  • [6] Caenepeel S., Ion B., Militaru G., Zhu S., The factorization problem and the smash biproduct of algebras and coalgebras, Algebr. Represent. Theory, 2000, 3(1), 19–42 http://dx.doi.org/10.1023/A:1009917210863

  • [7] Cap A., Schichl H., Vanžura J., On twisted tensor products of algebras, Comm. Algebra, 1995, 23(12), 4701–4735 http://dx.doi.org/10.1080/00927879508825496

  • [8] Cohn P.M., A remark on the general product of two infinite cyclic groups, Arch. Math. (Basel), 1956, 7(2), 94–99

  • [9] Douglas J., On finite groups with two independent generators. I, II, III, IV, Proc. Nat. Acad. Sci. U.S.A., 1951, 37, 604–610, 677–691, 749–760, 808–813 http://dx.doi.org/10.1073/pnas.37.9.604

  • [10] Giudici M., Factorisations of sporadic simple groups, J. Algebra, 2006, 304(1), 311–323 http://dx.doi.org/10.1016/j.jalgebra.2006.04.019

  • [11] Guccione J.A., Guccione J.J., Valqui C., Twisted planes, Comm. Algebra, 2010, 38(5), 1930–1956 http://dx.doi.org/10.1080/00927870903023105

  • [12] Itô N., Über das Produkt von zwei abelschen Gruppen, Math. Z., 1955, 62, 400–401 http://dx.doi.org/10.1007/BF01180647

  • [13] Jara Martínez P., López Peña J., Panaite F., Van Oystaeyen F., On iterated twisted tensor products of algebras, Internat. J. Math., 2008, 19(9), 1053–1101 http://dx.doi.org/10.1142/S0129167X08004996

  • [14] Liebeck M.W., Praeger C.E., Saxl J., The Maximal Factorizations of the Finite Simple Groups and their Automorphism Groups, Mem. Amer. Math. Soc., 86(432), American Mathematical Society, Providence, 1990

  • [15] Liebeck M.W., Praeger C.E., Saxl J., Regular Subgroups of Primitive Permutation Groups, Mem. Amer. Math. Soc., 203 (952), American Mathematical Society, Providence, 2010

  • [16] López Peña J., Navarro G., On the classification and properties of noncommutative duplicates, K-Theory, 2008, 38(2), 223–234 http://dx.doi.org/10.1007/s10977-007-9017-y

  • [17] Krötz B., A novel characterization of the Iwasawa decomposition of a simple Lie group, In: Basic Bundle Theory and K-Cohomology Invariants, Lecture Notes in Phys., 726, Springer, Heidelberg, 2007, 195–201

  • [18] Maillet E., Sur les groupes échangeables et les groupes décomposables, Bull. Soc. Math. France, 1900, 28, 7–16

  • [19] Masuoka A., Hopf algebra extensions and cohomology, In: New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge University Press, Cambridge, 2002, 167–209

  • [20] Michor P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo, 1990, Suppl. 22, 171–175

  • [21] Ore O., Structures and group theory. I, Duke Math. J., 1937, 3(2), 149–174 http://dx.doi.org/10.1215/S0012-7094-37-00311-9

  • [22] Praeger C.E., Schneider C., Factorisations of characteristically simple groups, J. Algebra, 2002, 255, 198–220 http://dx.doi.org/10.1016/S0021-8693(02)00111-4

  • [23] Rédei L., Zur Theorie der faktorisierbaren Gruppen. I, Acta Math. Acad. Sci. Hung., 1950, 1, 74–98 http://dx.doi.org/10.1007/BF02022554

  • [24] Takeuchi M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra, 1981, 9(8), 841–882 http://dx.doi.org/10.1080/00927878108822621

  • [25] Vaes S., Vainerman L., Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., 2003, 175(1), 1–101 http://dx.doi.org/10.1016/S0001-8708(02)00040-3

  • [26] Wiegold J., Williamson A.G., The factorisation of the alternating and symmetric groups, Math. Z., 1980, 175(2), 171–179 http://dx.doi.org/10.1007/BF01674447

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search