Schreier type theorems for bicrossed products

Ana Agore 1  and Gigel Militaru 2
  • 1 Vrije Universiteit Brussel
  • 2 University of Bucharest


We prove that the bicrossed product of two groups is a quotient of the pushout of two semidirect products. A matched pair of groups (H;G; α; β) is deformed using a combinatorial datum (σ; v; r) consisting of an automorphism σ of H, a permutation v of the set G and a transition map r: G → H in order to obtain a new matched pair (H; (G; *); α′, β′) such that there exists a σ-invariant isomorphism of groups H α⋈β G ≅H α′⋈β′ (G, *). Moreover, if we fix the group H and the automorphism σ ∈ Aut H then any σ-invariant isomorphism H α⋈β G ≅ H α′⋈β′ G′ between two arbitrary bicrossed product of groups is obtained in a unique way by the above deformation method. As applications two Schreier type classification theorems for bicrossed products of groups are given.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Agore A.L., Chirvăsitu A., Ion B., Militaru G., Bicrossed products for finite groups, Algebr. Represent. Theory, 2009, 12(2–5), 481–488

  • [2] Aguiar M., Andruskiewitsch N., Representations of matched pairs of groupoids and applications to weak Hopf algebras, In: Algebraic Structures and their Representations, Contemp. Math., 376, American Mathematical Society, Providence, 2005, 127–173

  • [3] Amberg B., Franciosi S., de Giovanni F., Products of Groups, Oxford Math. Monogr., Oxford University Press, New York, 1992

  • [4] Baaj S., Skandalis G., Vaes S., Measurable Kac cohomology for bicrossed products, Trans. Amer. Math. Soc., 2005, 357(4), 1497–1524

  • [5] Baumeister B., Factorizations of primitive permutation groups, J. Algebra, 1997, 194(2), 631–653

  • [6] Caenepeel S., Ion B., Militaru G., Zhu S., The factorization problem and the smash biproduct of algebras and coalgebras, Algebr. Represent. Theory, 2000, 3(1), 19–42

  • [7] Cap A., Schichl H., Vanžura J., On twisted tensor products of algebras, Comm. Algebra, 1995, 23(12), 4701–4735

  • [8] Cohn P.M., A remark on the general product of two infinite cyclic groups, Arch. Math. (Basel), 1956, 7(2), 94–99

  • [9] Douglas J., On finite groups with two independent generators. I, II, III, IV, Proc. Nat. Acad. Sci. U.S.A., 1951, 37, 604–610, 677–691, 749–760, 808–813

  • [10] Giudici M., Factorisations of sporadic simple groups, J. Algebra, 2006, 304(1), 311–323

  • [11] Guccione J.A., Guccione J.J., Valqui C., Twisted planes, Comm. Algebra, 2010, 38(5), 1930–1956

  • [12] Itô N., Über das Produkt von zwei abelschen Gruppen, Math. Z., 1955, 62, 400–401

  • [13] Jara Martínez P., López Peña J., Panaite F., Van Oystaeyen F., On iterated twisted tensor products of algebras, Internat. J. Math., 2008, 19(9), 1053–1101

  • [14] Liebeck M.W., Praeger C.E., Saxl J., The Maximal Factorizations of the Finite Simple Groups and their Automorphism Groups, Mem. Amer. Math. Soc., 86(432), American Mathematical Society, Providence, 1990

  • [15] Liebeck M.W., Praeger C.E., Saxl J., Regular Subgroups of Primitive Permutation Groups, Mem. Amer. Math. Soc., 203 (952), American Mathematical Society, Providence, 2010

  • [16] López Peña J., Navarro G., On the classification and properties of noncommutative duplicates, K-Theory, 2008, 38(2), 223–234

  • [17] Krötz B., A novel characterization of the Iwasawa decomposition of a simple Lie group, In: Basic Bundle Theory and K-Cohomology Invariants, Lecture Notes in Phys., 726, Springer, Heidelberg, 2007, 195–201

  • [18] Maillet E., Sur les groupes échangeables et les groupes décomposables, Bull. Soc. Math. France, 1900, 28, 7–16

  • [19] Masuoka A., Hopf algebra extensions and cohomology, In: New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge University Press, Cambridge, 2002, 167–209

  • [20] Michor P.W., Knit products of graded Lie algebras and groups, Rend. Circ. Mat. Palermo, 1990, Suppl. 22, 171–175

  • [21] Ore O., Structures and group theory. I, Duke Math. J., 1937, 3(2), 149–174

  • [22] Praeger C.E., Schneider C., Factorisations of characteristically simple groups, J. Algebra, 2002, 255, 198–220

  • [23] Rédei L., Zur Theorie der faktorisierbaren Gruppen. I, Acta Math. Acad. Sci. Hung., 1950, 1, 74–98

  • [24] Takeuchi M., Matched pairs of groups and bismash products of Hopf algebras, Comm. Algebra, 1981, 9(8), 841–882

  • [25] Vaes S., Vainerman L., Extensions of locally compact quantum groups and the bicrossed product construction, Adv. Math., 2003, 175(1), 1–101

  • [26] Wiegold J., Williamson A.G., The factorisation of the alternating and symmetric groups, Math. Z., 1980, 175(2), 171–179


Journal + Issues