Combinatorial bases of modules for affine Lie algebra B 2(1)

Mirko Primc 1
  • 1 Department of Mathematics, University of Zagreb, Bijenička 30, 10000, Zagreb, Croatia

Abstract

We construct bases of standard (i.e. integrable highest weight) modules L(Λ) for affine Lie algebra of type B 2(1) consisting of semi-infinite monomials. The main technical ingredient is a construction of monomial bases for Feigin-Stoyanovsky type subspaces W(Λ) of L(Λ) by using simple currents and intertwining operators in vertex operator algebra theory. By coincidence W(kΛ0) for B 2(1) and the integrable highest weight module L(kΛ0) for A 1(1) have the same parametrization of combinatorial bases and the same presentation P/I.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Ardonne E., Kedem R., Stone M., Fermionic characters and arbitrary highest-weight integrable \( \widehat{\mathfrak{s}\mathfrak{l}}_{r + 1} \) -modules, Comm. Math. Phys., 2006, 264(2), 427–464 http://dx.doi.org/10.1007/s00220-005-1486-3

  • [2] Baranović I., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of level 2 standard modules for D 4(1), Comm. Algebra, 2011, 39(3), 1007–1051 http://dx.doi.org/10.1080/00927871003639329

  • [3] Calinescu C., Principal subspaces of higher-level standard \( \widehat{\mathfrak{s}\mathfrak{l}(3)} \) -modules, J. Pure Appl. Algebra, 2007, 210(2), 559–575 http://dx.doi.org/10.1016/j.jpaa.2006.10.018

  • [4] Calinescu C., Lepowsky J., Milas A., Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A,D,E, J. Algebra, 2010, 323(1), 167–192 http://dx.doi.org/10.1016/j.jalgebra.2009.09.029

  • [5] Capparelli S., Lepowsky J., Milas A., The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math., 2003, 5(6), 947–966 http://dx.doi.org/10.1142/S0219199703001191

  • [6] Capparelli S., Lepowsky J., Milas A., The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J., 2006, 12(3), 379–397 http://dx.doi.org/10.1007/s11139-006-0150-7

  • [7] Dong C., Lepowsky J., Generalized vertex algebras and relative vertex operators, Progr. Math., 112, Birkhäuser, Boston, 1993 http://dx.doi.org/10.1007/978-1-4612-0353-7

  • [8] Dong C., Li H., Mason G., Simple currents and extensions of vertex operator algebras, Comm. Math. Phys., 1996, 180(3), 671–707 http://dx.doi.org/10.1007/BF02099628

  • [9] Feigin B., Jimbo M., Loktev S., Miwa T., Mukhin E., Bosonic formulas for (k, l)-admissible partitions, Ramanujan J., 2003, 7(4), 485–517; Addendum to “Bosonic formulas for (k, l)-admissible partitions”, Ramanujan J., 2003, 7(4), 519–530 http://dx.doi.org/10.1023/B:RAMA.0000012430.68976.c0

  • [10] Feigin B., Jimbo M., Miwa T., Mukhin E., Takeyama Y., Fermionic formulas for (k, 3)-admissible configurations, Publ. Res. Inst. Math. Sci., 2004, 40(1), 125–162 http://dx.doi.org/10.2977/prims/1145475968

  • [11] Feigin B., Kedem R., Loktev S., Miwa T., Mukhin E., Combinatorics of the \( \widehat{\mathfrak{s}\mathfrak{l}}_2 \) spaces of coinvariants, Transform. Groups, 2001, 6(1), 25–52 http://dx.doi.org/10.1007/BF01236061

  • [12] Feigin E., The PBW filtration, Represent. Theory, 2009, 13, 165–181 http://dx.doi.org/10.1090/S1088-4165-09-00349-5

  • [13] Frenkel I.B., Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal., 1981, 44(3), 259–327 http://dx.doi.org/10.1016/0022-1236(81)90012-4

  • [14] Frenkel I.B., Huang Y.-Z., Lepowsky J., On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., 1993, 104, #494

  • [15] Frenkel I.B., Kac V.G., Basic representations of affine Lie algebras and dual resonance models, Invent. Math., 1980, 62(1), 23–66 http://dx.doi.org/10.1007/BF01391662

  • [16] Fuchs J., Simple WZW currents, Comm. Math. Phys., 1991, 136(2), 345–356 http://dx.doi.org/10.1007/BF02100029

  • [17] Georgiev G., Combinatorial constructions of modules for infinite-dimensional Lie algebras. I. Principal subspace, J. Pure Appl. Algebra, 1996, 112(3), 247–286 http://dx.doi.org/10.1016/0022-4049(95)00143-3

  • [18] Huang Y.-Z., Lepowsky J., Toward a theory of tensor products for representations of a vertex operator algebra, In: Proceedings of the XXth International Conference on Differential Geometric Methods in Theoretical Physics, New York, June 3–7, 1991, World Scientific, River Edge, 1992, 344–354

  • [19] Kac V.G., Infinite-Dimensional Lie Algebras, 3rd ed, Cambridge University Press, Cambridge, 1990 http://dx.doi.org/10.1017/CBO9780511626234

  • [20] Kang S.-J., Kashiwara M., Misra K.C., Miwa T., Nakashima T., Nakayashiki A., Affine crystals and vertex models, In: Infinite Analysis, Kyoto, June 1–August 31, 1991, Adv. Ser. Math. Phys., 16, World Scientific, River Edge, 1992, 449–484

  • [21] Lepowsky J., Primc M., Structure of the Standard Modules for the Affine Lie Algebra A 1(1), Contemp. Math., 46, American Mathematical Society, Providence, 1985 http://dx.doi.org/10.1090/conm/046

  • [22] Li H., Extension of vertex operator algebras by a self-dual simple module, J. Algebra, 1997, 187(1), 236–267 http://dx.doi.org/10.1006/jabr.1997.6795

  • [23] Li H., The physics superselection principle in vertex operator algebra theory, J. Algebra, 1997, 196(2), 436–457 http://dx.doi.org/10.1006/jabr.1997.7126

  • [24] Meurman A., Primc M., Vertex operator algebras and representations of affine Lie algebras, Acta Appl. Math., 1996, 44(1–2), 207–215 http://dx.doi.org/10.1007/BF00116522

  • [25] Meurman A., Primc M., Annihilating Fields of Standard Modules of sl(2,ℂ)∼ and Combinatorial Identities, Mem. Amer. Math. Soc., 1999, 137, #652

  • [26] Primc M., Vertex operator construction of standard modules for A n(1), Pacific J. Math., 1994, 162(1), 143–187

  • [27] Primc M., Basic representations for classical affine Lie algebras, J. Algebra, 2000, 228(1), 1–50 http://dx.doi.org/10.1006/jabr.1999.7899

  • [28] Primc M., (k, r)-admissible configurations and intertwining operators, In: Lie Algebras, Vertex Operator Algebras and Their Applications, Raleigh, May 17–21, 2005, Contemp. Math., 442, American Mathematical Society, Providence, 2007, 425–434 http://dx.doi.org/10.1090/conm/442/08540

  • [29] Stoyanovski A.V., Feigin B.L., Functional models of the representations of current algebras, and semi-infinite Schubert cells, Funct. Anal. Appl., 1994, 28(1), 55–72 http://dx.doi.org/10.1007/BF01079010

  • [30] Trupčević G., Combinatorial bases of Feigin-Stoyanovsky’s type subspaces of higher-level standard \( \widetilde{\mathfrak{s}\mathfrak{l}}(\ell + 1,\mathbb{C}) \) -modules, J. Algebra, 2009, 322(10), 3744–3774 http://dx.doi.org/10.1016/j.jalgebra.2009.07.024

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search