Galois realizability of groups of orders p 5 and p 6

Ivo Michailov 1
  • 1 Faculty of Mathematics and Informatics, Shumen University “Episkop Konstantin Preslavski”, Universitetska str. 115, 9700, Shumen, Bulgaria

Abstract

Let p be an odd prime and k an arbitrary field of characteristic not p. We determine the obstructions for the realizability as Galois groups over k of all groups of orders p 5 and p 6 that have an abelian quotient obtained by factoring out central subgroups of order p or p 2. These obstructions are decomposed as products of p-cyclic algebras, provided that k contains certain roots of unity.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Albert A.A., Modern Higher Algebra, University of Chicago Press, Chicago, 1937

  • [2] Grundman H.G., Smith T.L., Galois realizability of a central C 4-extension of D 8, J. Algebra, 2009, 322(10), 3492–3498 http://dx.doi.org/10.1016/j.jalgebra.2009.08.015

  • [3] Grundman H.G., Smith T.L., Realizability and automatic realizability of Galois groups of order 32, Cent. Eur. J. Math., 2010, 8(2), 244–260 http://dx.doi.org/10.2478/s11533-009-0072-x

  • [4] Grundman H.G., Smith T.L., Galois realizability of groups of order 64, Cent. Eur. J. Math., 2010, 8(5), 846–854 http://dx.doi.org/10.2478/s11533-010-0052-1

  • [5] Ishkhanov V.V., Lur’e B.B., Faddeev D.K., The Embedding Problem in Galois Theory, Transl. Math. Monogr., 165, Amerecian Mathematical Society, Providence, 1997

  • [6] James R., The groups of order p 6 (p an odd prime), Math. Comp., 1980, 34(150), 613–637

  • [7] Kiming I., Explicit classifications of some 2-extensions of a field of characteristic different from 2, Canad. J. Math., 1990, 42(5), 825–855 http://dx.doi.org/10.4153/CJM-1990-043-6

  • [8] Ledet A., On 2-groups as Galois groups, Canad. J. Math., 1995, 47(6), 1253–1273 http://dx.doi.org/10.4153/CJM-1995-064-3

  • [9] Ledet A., Brauer Type Embedding Problems, Fields Inst. Monogr., 21, American Mathematical Society, Providence, 2005

  • [10] Massy R., Construction de p-extensions galoisiennes d’un corps de caractéristique différente de p, J. Algebra, 1987, 109(2), 508–535 http://dx.doi.org/10.1016/0021-8693(87)90153-0

  • [11] Merkur’ev A.S., Suslin A.A., K-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat., 1982, 46(5), 1011–1046 (in Russian)

  • [12] Michailov I.M., Groups of order 32 as Galois groups, Serdica Math. J., 2007, 33(1), 1–34

  • [13] Michailov I.M., Embedding obstructions for the cyclic and modular 2-groups, Math. Balkanica (N.S.), 2007, 21(1–2), 31–50

  • [14] Michailov I.M., Four non-abelian groups of order p 4 as Galois groups, J. Algebra, 2007, 307(1), 287–299 http://dx.doi.org/10.1016/j.jalgebra.2006.05.021

  • [15] Michailov I.M., On Galois cohomology and realizability of 2-groups as Galois groups, Cent. Eur. J. Math., 2011, 9(2), 2011, 403–419 http://dx.doi.org/10.2478/s11533-011-0004-4

  • [16] Michailov I.M., Ziapkov N.P., Embedding obstructions for the generalized quaternion group, J. Algebra, 2000, 226(1), 375–389 http://dx.doi.org/10.1006/jabr.1999.8190

  • [17] Michailov I.M., Ziapkov N.P., On realizability of p-groups as Galois groups, Serdica Math. J., 2011, 37(3), 173–210

  • [18] Pierce R.S., Associative Algebras, Grad. Texts in Math., 88, Springer, New York-Berlin, 1982

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search