Spaces of measurable functions

Piotr Niemiec 1
  • 1 Instytut Matematyki, Wydział Matematyki i Informatyki, Uniwersytet Jagiellonski, Łojasiewicza 6, 30-348, Kraków, Poland


For a metrizable space X and a finite measure space (Ω, $\mathfrak{M}$, µ), the space M µ(X) of all equivalence classes (under the relation of equality almost everywhere mod µ) of $\mathfrak{M}$-measurable functions from Ω to X, whose images are separable, equipped with the topology of convergence in measure, and some of its subspaces are studied. In particular, it is shown that M µ(X) is homeomorphic to a Hilbert space provided µ is (nonzero) nonatomic and X is completely metrizable and has more than one point.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Banakh T.O., Topology of spaces of probability measures. I. The functors P τ and \(\hat P\) , Mat. Stud., 1995, 5, 65–87 (in Russian), English translation available at

  • [2] Banakh T.O., Topology of spaces of probability measures. II. Barycenters of Radon probability measures and the metrization of the functors P τ and \(\hat P\) , Mat. Stud., 1995, 5, 88–106 (in Russian), English translation available at

  • [3] Banakh T., Bessaga Cz., On linear operators extending [pseudo]metrics, Bull. Polish Acad. Sci. Math., 2000, 48(1), 35–49

  • [4] Banakh T.O., Radul T.N., Topology of spaces of probability measures, Sb. Math., 1997, 188(7), 973–995

  • [5] Banakh T., Zarichnyy I., Topological groups and convex sets homeomorphic to non-separable Hilbert spaces, Cent. Eur. J. Math., 2008, 6(1), 77–86

  • [6] Bessaga Cz., Pełczyński A., On spaces of measurable functions, Studia Math., 1972, 44(6), 597–615

  • [7] Chapman T.A., Deficiency in infinite-dimensional manifolds, General Topology and Appl., 1971, 1(3), 263–272

  • [8] Dobrowolski T., Toruńczyk H., Separable complete ANR’s admitting a group structure are Hilbert manifolds, Topology Appl., 1981, 12(3), 229–235

  • [9] Halmos P.R., Measure Theory, Van Nostrand, New York, 1950

  • [10] Hartman S., Mycielski J., On the imbedding of topological groups into connected topological groups, Colloq. Math., 1958, 5, 167–169

  • [11] Kuratowski K., Mostowski A., Set Theory, 2nd ed., Stud. Logic Found. Math., 86, North-Holland/PWN, Amsterdam-New York-Oxford/Warsaw, 1976

  • [12] Maharam D., On homogeneous measure algebras, Proc. Nat. Acad. Sci. U.S.A., 1942, 28, 108–111

  • [13] Niemiec P., Functor of continuation in Hilbert cube and Hilbert space, preprint available at

  • [14] Rudin W., Real and Complex Analysis, McGraw-Hill, New York-Toronto, 1966

  • [15] Takesaki M., Theory of Operator Algebras, I, Encyclopaedia Math. Sci., 124, Springer, Berlin, 2002

  • [16] Toruńczyk H., Characterization of infinite-dimensional manifolds, In: Proceedings of the International Conference on Geometric Topology, Warsaw, 1978, PWN, Warsaw, 1980, 431–437

  • [17] Toruńczyk H., Characterizing Hilbert space topology, Fund. Math., 1981, 111(3), 247–262

  • [18] Toruńczyk H., A correction of two papers concerning Hilbert manifolds: “Concerning locally homotopy negligible sets and characterization of l 2-manifolds” [Fund. Math. 101 (1978), no. 2, 93–110; MR 80g:57019] and “Characterizing Hilbert space topology” [ibid. 111 (1981), no. 3, 247–262; MR 82i:57016], Fund. Math., 1985, 125, 89–93


Journal + Issues