Milnor fibration at infinity for mixed polynomials

Ying Chen 1
  • 1 Mathématiques, Laboratoire Paul Painlevé, Université Lille 1, 59655, Villeneuve d’Ascq, France

Abstract

We study the existence of Milnor fibration on a big enough sphere at infinity for a mixed polynomial f: ℝ2n → ℝ2. By using strongly non-degenerate condition, we prove a counterpart of Némethi and Zaharia’s fibration theorem. In particular, we obtain a global version of Oka’s fibration theorem for strongly non-degenerate and convenient mixed polynomials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Araújo dos Santos R.N., Chen Y., Tibăr M., Singular open book structures from real mappings, Cent. Eur. J. Math., 2013, 11(5), 817–828 http://dx.doi.org/10.2478/s11533-013-0212-1

  • [2] Bodin A., Milnor fibration and fibred links at infinity, Internat. Math. Res. Notices, 1999, 11, 615–621 http://dx.doi.org/10.1155/S1073792899000318

  • [3] Broughton S.A., On the topology of polynomial hypersurfaces, In: Singularities, Part 1, Arcata, July 20–August 7, 1981, Proc. Sympos. Pure Math., 40, American Mathematical Society, Providence, 1983, 167–178

  • [4] Broughton S.A., Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 1988, 92(2), 217–241 http://dx.doi.org/10.1007/BF01404452

  • [5] Chen Y., Bifurcation Values of Mixed Polynomials and Newton Polyhedra, PhD thesis, Université de Lille 1, Lille, 2012

  • [6] Chen Y., Tibăr M., Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., 2012, 19(1), 59–79 http://dx.doi.org/10.4310/MRL.2012.v19.n1.a6

  • [7] Cisneros-Molina J.L., Join theorem for polar weighted homogeneous singularities, In: Singularities II, Cuernavaca, January 8–26, 2007, Contemp. Math., 475, American Mathematical Society, Providence, 2008, 43–59

  • [8] Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 1976, 32(1), 1–31 http://dx.doi.org/10.1007/BF01389769

  • [9] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton University Press, 1968

  • [10] Némethi A., Théorie de Lefschetz pour les variétés algébriques affines, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(12), 567–570

  • [11] Némethi A., Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl., 1988, 33(3), 233–250

  • [12] Némethi A., Zaharia A., On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., 1990, 26(4), 681–689 http://dx.doi.org/10.2977/prims/1195170853

  • [13] Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math. (N.S.), 1992, 3(3), 323–335 http://dx.doi.org/10.1016/0019-3577(92)90039-N

  • [14] Oka M., Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 2008, 31(2), 163–182 http://dx.doi.org/10.2996/kmj/1214442793

  • [15] Oka M., Non-degenerate mixed functions, Kodai Math. J., 2010, 33(1), 1–62 http://dx.doi.org/10.2996/kmj/1270559157

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search