Milnor fibration at infinity for mixed polynomials

Ying Chen 1
  • 1 Mathématiques, Laboratoire Paul Painlevé, Université Lille 1, 59655, Villeneuve d’Ascq, France


We study the existence of Milnor fibration on a big enough sphere at infinity for a mixed polynomial f: ℝ2n → ℝ2. By using strongly non-degenerate condition, we prove a counterpart of Némethi and Zaharia’s fibration theorem. In particular, we obtain a global version of Oka’s fibration theorem for strongly non-degenerate and convenient mixed polynomials.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Araújo dos Santos R.N., Chen Y., Tibăr M., Singular open book structures from real mappings, Cent. Eur. J. Math., 2013, 11(5), 817–828

  • [2] Bodin A., Milnor fibration and fibred links at infinity, Internat. Math. Res. Notices, 1999, 11, 615–621

  • [3] Broughton S.A., On the topology of polynomial hypersurfaces, In: Singularities, Part 1, Arcata, July 20–August 7, 1981, Proc. Sympos. Pure Math., 40, American Mathematical Society, Providence, 1983, 167–178

  • [4] Broughton S.A., Milnor numbers and the topology of polynomial hypersurfaces, Invent. Math., 1988, 92(2), 217–241

  • [5] Chen Y., Bifurcation Values of Mixed Polynomials and Newton Polyhedra, PhD thesis, Université de Lille 1, Lille, 2012

  • [6] Chen Y., Tibăr M., Bifurcation values and monodromy of mixed polynomials, Math. Res. Lett., 2012, 19(1), 59–79

  • [7] Cisneros-Molina J.L., Join theorem for polar weighted homogeneous singularities, In: Singularities II, Cuernavaca, January 8–26, 2007, Contemp. Math., 475, American Mathematical Society, Providence, 2008, 43–59

  • [8] Kouchnirenko A.G., Polyèdres de Newton et nombres de Milnor, Invent. Math., 1976, 32(1), 1–31

  • [9] Milnor J., Singular Points of Complex Hypersurfaces, Ann. of Math. Studies, 61, Princeton University Press, 1968

  • [10] Némethi A., Théorie de Lefschetz pour les variétés algébriques affines, C. R. Acad. Sci. Paris Sér. I Math., 1986, 303(12), 567–570

  • [11] Némethi A., Lefschetz theory for complex affine varieties, Rev. Roumaine Math. Pures Appl., 1988, 33(3), 233–250

  • [12] Némethi A., Zaharia A., On the bifurcation set of a polynomial function and Newton boundary, Publ. Res. Inst. Math. Sci., 1990, 26(4), 681–689

  • [13] Némethi A., Zaharia A., Milnor fibration at infinity, Indag. Math. (N.S.), 1992, 3(3), 323–335

  • [14] Oka M., Topology of polar weighted homogeneous hypersurfaces, Kodai Math. J., 2008, 31(2), 163–182

  • [15] Oka M., Non-degenerate mixed functions, Kodai Math. J., 2010, 33(1), 1–62


Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.