Boolean algebras admitting a countable minimally acting group

Aleksander Błaszczyk 1 , Andrzej Kucharski 1 , and Sławomir Turek 2
  • 1 Institute of Mathematics, University of Silesia, Bankowa 14, 40-007, Katowice, Poland
  • 2 Institute of Mathematics, Jan Kochanowski University, Świętokrzyska 15, 25-406, Kielce, Poland

Abstract

The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Balcar B., Błaszczyk A., On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolin., 1990, 31(1), 7–11

  • [2] Balcar B., Franek F., Structural properties of universal minimal dynamical systems for discrete semigroups, Trans. Amer. Math. Soc., 1997, 349(5), 1697–1724 http://dx.doi.org/10.1090/S0002-9947-97-01868-0

  • [3] Balcar B., Jech T., Zapletal J., Semi-Cohen Boolean algebras, Ann. Pure Appl. Logic, 1997, 87(3), 187–208 http://dx.doi.org/10.1016/S0168-0072(97)00009-2

  • [4] Bandlow I., On the absolutes of compact spaces with a minimally acting group, Proc. Amer. Math. Soc., 1994, 122(1), 261–264 http://dx.doi.org/10.1090/S0002-9939-1994-1246512-X

  • [5] Błaszczyk A., Irreducible images of βℕ \ℕ, Rend. Circ. Mat. Palermo, 1984, Suppl. 3, 47–54

  • [6] Geschke S., A note on minimal dynamical systems, Acta Univ. Carolin. Math. Phys., 2004, 45(2), 35–43

  • [7] Haydon R., On a problem of Pełczyński: Milutin spaces, Dugundji spaces and AE(0-dim), Studia Math., 1974, 52(1), 23–31

  • [8] Heindorf L., Shapiro L.B., Nearly Projective Boolean Algebras, Lect. Notes Math., 1596, Springer, Berlin, 1994

  • [9] Koppelberg S., Handbook of Boolean Algebras, 1, North-Holland, Amsterdam, 1989

  • [10] Koppelberg S., Projective Boolean algebras, In: Handbook of Boolean Algebras, 3, North-Holland, Amsterdam, 1989, 741–773

  • [11] Koppelberg S., Characterizations of Cohen algebras, In: Papers on General Topology and Applications, Madison, 1991, Ann. New York Acad. Sci., 704, New York Acad. Sci., New York, 1993, 222–237

  • [12] Shapiro L.B., On spaces coabsolute to a generalized Cantor discontinuum, Soviet Math. Dokl., 1986, 33, 870–874

  • [13] Shapiro L.B., On spaces coabsolute to dyadic compacta, Soviet Math. Dokl., 1987, 35, 434–438

  • [14] Turek S., Minimal dynamical systems for !-bounded groups, Acta Univ. Carolin. Math. Phys., 1994, 35(2), 77–81

  • [15] Turek S., Minimal actions on Cantor cubes, Bull. Polish Acad. Sci. Math., 2003, 51(2), 129–138

OPEN ACCESS

Journal + Issues

Search