Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space

Georgi Ganchev 1  and Velichka Milousheva
  • 1 Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 8, 1113, Sofia, Bulgaria
  • 2 “L. Karavelov” Civil Engineering Higher School, 175 Suhodolska Str., 1373, Sofia, Bulgaria

Abstract

In the four-dimensional pseudo-Euclidean space with neutral metric there are three types of rotational surfaces with two-dimensional axis — rotational surfaces of elliptic, hyperbolic or parabolic type. A surface whose mean curvature vector field is lightlike is said to be quasi-minimal. In this paper we classify all rotational quasi-minimal surfaces of elliptic, hyperbolic and parabolic type, respectively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Chen, B.-Y., Classification of marginally trapped Lorentzian flat surfaces in \(\mathbb{E}_2^4 \) and its application to biharmonic surfaces, J. Math. Anal. Appl., 2008, 340(2), 861–875. http://dx.doi.org/10.1016/j.jmaa.2007.09.021

  • [2] Chen, B.-Y., Classification of marginally trapped surfaces of constant curvature in Lorentzian complex plane, Hokkaido Math. J., 2009, 38(2), 361–408. http://dx.doi.org/10.14492/hokmj/1248190082

  • [3] Chen, B.-Y., Black holes, marginally trapped surfaces and quasi-minimal surfaces. Tamkang J. Math., 2009, 40(4), 313–341.

  • [4] Chen, B.-Y., Pseudo-Riemannian geometry, δ-invariants and applications, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. http://dx.doi.org/10.1142/8003

  • [5] Chen, B.-Y., Dillen, F., Classification of marginally trapped Lagrangian surfaces in Lorentzian complex space forms, J. Math. Phys., 2007, 48(1), 013509, 23 pp.; Erratum, J. Math. Phys., 2008, 49(5), 059901, 1p. http://dx.doi.org/10.1063/1.2424553

  • [6] Chen, B.-Y., Garay, O., Classification of quasi-minimal surfaces with parallel mean curvature vector in pseudo-Euclidean 4-space \(\mathbb{E}_2^4 \) , Result. Math., 2009, 55(1–2), 23–38. http://dx.doi.org/10.1007/s00025-009-0386-9

  • [7] Chen, B.-Y., Mihai, I., Classification of quasi-minimal slant surfaces in Lorentzian complex space forms, Acta Math. Hungar., 2009, 122(4), 307–328. http://dx.doi.org/10.1007/s10474-008-8033-6

  • [8] Chen, B.-Y., Van der Veken, J., Marginally trapped surfaces in Lorentzian space with positive relative nullity, Class. Quantum Grav., 2007, 24(3), 551–563. http://dx.doi.org/10.1088/0264-9381/24/3/003

  • [9] Chen, B.-Y., Van der Veken, J., Spatial and Lorentzian surfaces in Robertson-Walker space times, J. Math. Phys., 2007, 48(7), 073509, 12 pp. http://dx.doi.org/10.1063/1.2748616

  • [10] Chen, B.-Y., Van der Veken, J., Classification of marginally trapped surfaces with parallel mean curvature vector in Lorenzian space forms, Houston J. Math., 2010, 36(2), 421–449.

  • [11] Chen, B.-Y., Yang, D., Addendum to “Classification of marginally trapped Lorentzian flat surfaces in \(\mathbb{E}_2^4 \) and its application to biharmonic surfaces,” J. Math. Anal. Appl., 2010, 361(1), 280–282. http://dx.doi.org/10.1016/j.jmaa.2009.08.061

  • [12] Ganchev, G., Milousheva, V., Chen rotational surfaces of hyperbolic or elliptic type in the four-dimensional Minkowski space, C. R. Acad. Bulgare Sci., 2011, 64(5), 641–652.

  • [13] Ganchev, G., Milousheva, V., An invariant theory of marginally trapped surfaces in the four-dimensional Minkowski space, J. Math. Phys., 2012, 53(3), 033705, 15 pp. http://dx.doi.org/10.1063/1.3693976

  • [14] Haesen, S., Ortega, M., Boost invariant marginally trapped surfaces in Minkowski 4-space, Classical Quantum Gravity, 2007, 24(22), 5441–5452. http://dx.doi.org/10.1088/0264-9381/24/22/009

  • [15] Haesen, S., Ortega, M., Marginally trapped surfaces in Minkowski 4-space invariant under a rotational subgroup of the Lorentz group, Gen. Relativity Gravitation, 2009, 41(8), 1819–1834. http://dx.doi.org/10.1007/s10714-008-0754-x

  • [16] Haesen, S., Ortega, M., Screw invariant marginally trapped surfaces in Minkowski 4-space, J. Math. Anal. Appl., 2009, 355(2), 639–648. http://dx.doi.org/10.1016/j.jmaa.2009.02.019

  • [17] Liu H., Liu G., Hyperbolic rotation surfaces of constant mean curvature in 3-de Sitter space, Bull. Belg. Math. Soc. Simon Stevin, 2000, 7(3), 455–466.

  • [18] Liu H., Liu G., Weingarten rotation surfaces in 3-dimensional de Sitter space, J. Geom., 2004, 79(1–2), 156–168. http://dx.doi.org/10.1007/s00022-003-1567-4

  • [19] Penrose, R. Gravitational collapse and space-time singularities, Phys. Rev. Lett., 1965, 14, 57–59. http://dx.doi.org/10.1103/PhysRevLett.14.57

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search