Quartic del Pezzo surfaces over function fields of curves

Brendan Hassett 1  and Yuri Tschinkel
  • 1 Department of Mathematics-MS136, Rice University, 6100 S. Main St., Houston, TX, 77251-1892, USA
  • 2 Courant Institute, New York University, 251 Mercer St., New York, NY, 10012, USA
  • 3 Simons Foundation, 160 Fifth Avenue, New York, NY, 10010, USA


We classify quartic del Pezzo surface fibrations over the projective line via numerical invariants, giving explicit examples for small values of the invariants. For generic such fibrations, we describe explicitly the geometry of spaces of sections to the fibration, and mappings to the intermediate Jacobian of the total space. We exhibit examples where these are birational, which has applications to arithmetic questions, especially over finite fields.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Baker H.F., On the invariants of a binary quintic and the reality of its roots, Proc. London Math. Soc., 1908, s2–6(1), 122–140 http://dx.doi.org/10.1112/plms/s2-6.1.122

  • [2] Beauville A., Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup., 1977, 10(3), 309–391

  • [3] Brumer A., Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér. A-B, 1978, 286(16), A679–A681

  • [4] Castravet A.-M., Rational families of vector bundles on curves, Internat. J. Math., 2004, 15(1), 13–45 http://dx.doi.org/10.1142/S0129167X0400220X

  • [5] Cheltsov I., Nonrational nodal quartic threefolds, Pacific J. Math., 2006, 226(1), 65–81 http://dx.doi.org/10.2140/pjm.2006.226.65

  • [6] Debarre O., Iliev A., Manivel L., On nodal prime Fano threefolds of degree 10, Sci. China Math., 2011, 54(8), 1591–1609 http://dx.doi.org/10.1007/s11425-011-4182-0

  • [7] Debarre O., Iliev A., Manivel L., On the period map for prime Fano threefolds of degree 10, J. Algebraic Geom., 2012, 21(1), 21–59 http://dx.doi.org/10.1090/S1056-3911-2011-00594-8

  • [8] Deligne P., Illusie L., Relèvements modulo p 2 et décomposition du complexe de de Rham, Invent. Math., 1987, 89(2), 247–270 http://dx.doi.org/10.1007/BF01389078

  • [9] Donagi R., The tetragonal construction, Bull. Amer. Math. Soc. (N.S.), 1981, 4(2), 181–185 http://dx.doi.org/10.1090/S0273-0979-1981-14875-8

  • [10] Esnault H., Varieties over a finite field with trivial Chow group of 0-cycles have a rational point, Invent. Math., 2003, 151(1), 187–191 http://dx.doi.org/10.1007/s00222-002-0261-8

  • [11] Graber T., Harris J., Starr J., Families of rationally connected varieties, J. Amer. Math. Soc., 2003, 16(1), 57–67 http://dx.doi.org/10.1090/S0894-0347-02-00402-2

  • [12] Harris J., Roth M., Starr J., Curves of small degree on cubic threefolds, Rocky Mountain J. Math., 2005, 35(3), 761–817 http://dx.doi.org/10.1216/rmjm/1181069707

  • [13] Harris J., Roth M., Starr J., Abel-Jacobi maps associated to smooth cubic threefolds, preprint available at http://arxiv.org/abs/math/0202080

  • [14] Hassett B., Rational surfaces over nonclosed fields, In: Arithmetic Geometry, Clay Math. Proc., 8, American Mathematical Society, Providence, 2009, 155–209

  • [15] Hassett B., Hyeon D., Log minimal model program for the moduli space of stable curves: the first flip, Ann. of Math., 2013, 177(3), 911–968 http://dx.doi.org/10.4007/annals.2013.177.3.3

  • [16] Hassett B., Tschinkel Yu., uEmbedding pointed curves in K3 surfaces, preprint available at http://arxiv.org/abs/1301.7262

  • [17] Hassett B., Tschinkel Yu., Spaces of sections of quadric surface fibrations over curves, In: Compact Moduli Spaces and Vector Bundles, Contemp. Math., 564, American Mathematical Society, Providence, 2012, 227–249 http://dx.doi.org/10.1090/conm/564/11161

  • [18] Hosoh T., Automorphism groups of quartic del Pezzo surfaces, J. Algebra, 1996, 185(2), 374–389 http://dx.doi.org/10.1006/jabr.1996.0331

  • [19] Iliev A., Markushevich D., The Abel-Jacobi map for a cubic threefold and periods of Fano threefolds of degree 14, Doc. Math., 2000, 5, 23–47

  • [20] Iliev A., Markushevich D., atParametrization of sing Θ for a Fano 3-fold of genus 7 by moduli of vector bundles, Asian J. Math., 2007, 11(3), 427–458 http://dx.doi.org/10.4310/AJM.2007.v11.n3.a4

  • [21] de Jong A.J., Starr J., Every rationally connected variety over the function field of a curve has a rational point, Amer. J. Math., 2003, 125(3), 567–580 http://dx.doi.org/10.1353/ajm.2003.0017

  • [22] Kanev V., Intermediate Jacobians and Chow groups of threefolds with a pencil of del Pezzo surfaces, Ann. Mat. Pura Appl., 1989, 154, 13–48 http://dx.doi.org/10.1007/BF01790341

  • [23] Koitabashi M., Automorphism groups of generic rational surfaces, J. Algebra, 1988, 116(1), 130–142 http://dx.doi.org/10.1016/0021-8693(88)90196-2

  • [24] Kollár J., Rational Curves on Algebraic Varieties, Ergeb. Math. Grenzgeb., 32, Springer, Berlin, 1996 http://dx.doi.org/10.1007/978-3-662-03276-3

  • [25] Lang S., atAbelian varieties over finite fields, Proc. Nat. Acad. Sci. U.S.A., 1955, 41, 174–176 http://dx.doi.org/10.1073/pnas.41.3.174

  • [26] Leep D.B., The Amer-Brumer theorem over arbitrary fields, preprint available at www.ms.uky.edu/∼leep/Preprints.html

  • [27] Mabuchi T., Mukai S., Stability and Einstein-Kähler metric of a quartic del Pezzo surface, In: Einstein Metrics and Yang-Mills Connections, Sanda, December 6–11, 1990, Lecture Notes in Pure and Appl. Math., 145, Dekker, New York, 1993, 133–160

  • [28] Markushevich D., Tikhomirov A.S., The Abel-Jacobi map of a moduli component of vector bundles on the cubic threefold, J. Algebraic Geom., 2001, 10(1), 37–62

  • [29] Mukai S., Curves and symmetric spaces, I, Amer. J. Math., 1995, 117(6), 1627–1644 http://dx.doi.org/10.2307/2375032

  • [30] Namikawa Y., Smoothing Fano 3-folds, J. Algebraic Geom., 1997, 6(2), 307–324

  • [31] Reid M., The complete intersection of two or more quadrics, PhD thesis, Cambridge University, 1972, availble at http://homepages.warwick.ac.uk/∼masda/3folds/qu.pdf

  • [32] Shatz S.S., On subbundles of vector bundles over P 1, J. Pure Appl. Algebra, 1977/78, 10(3), 315–322 http://dx.doi.org/10.1016/0022-4049(77)90010-X

  • [33] Shramov K.A., On the rationality of nonsingular threefolds with a pencil of del Pezzo surfaces of degree 4, Sb. Math., 2006, 197(1–2), 127–137 http://dx.doi.org/10.1070/SM2006v197n01ABEH003749

  • [34] Tjurin A.N., The intersection of quadrics, Uspehi Mat. Nauk, 1975, 30(6), 51–99

  • [35] Zhu Y., Homogeneous fibrations over curves, preprint available at http://arxiv.org/abs/1111.2963


Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.