Chaotic behaviour of the map x ↦ ω(x, f)

Emma D’Aniello 1  and Timothy Steele 2
  • 1 Dipartimento di Matematica e Fisica, Seconda Università degli Studi di Napoli, Viale Lincoln 5, 81100, Caserta, Italy
  • 2 Department of Mathematics, Weber State University, 1702, University Circle, Ogden, UT, 84408-2501, USA


Let K(2ℕ) be the class of compact subsets of the Cantor space 2ℕ, furnished with the Hausdorff metric. Let f ∈ C(2ℕ). We study the map ω f: 2ℕ → K(2ℕ) defined as ω f (x) = ω(x, f), the ω-limit set of x under f. Unlike the case of n-dimensional manifolds, n ≥ 1, we show that ω f is continuous for the generic self-map f of the Cantor space, even though the set of functions for which ω f is everywhere discontinuous on a subsystem is dense in C(2ℕ). The relationships between the continuity of ω f and some forms of chaos are investigated.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Akin E., Auslander J., Berg K., When is a transitive map chaotic?, In: Convergence in Ergodic Theory and Probability, Columbus, June, 1993, Ohio State Univ. Math. Res. Inst. Publ., 5, de Gruyter, Berlin, 1996

  • [2] Banks J., Brooks J., Cairns G., Davis G., Stacey P., On Devaney’s definition of chaos, Amer. Math. Monthly, 1992, 99(4), 332–334

  • [3] Bernardes N.C. Jr., Darji U.B., Graph theoretic structure of maps of the Cantor space, Adv. Math., 2012, 231(3–4), 1655–1680

  • [4] Blanchard F., Topological chaos: what does this mean?, J. Difference Equ. Appl., 2009, 15(1), 23–46

  • [5] Blanchard F., Glasner E., Kolyada S., Maass A., On Li-Yorke pairs, J. Reine Angew. Math., 2002, 547, 51–68

  • [6] Blanchard F., Huang W., Entropy sets, weakly mixing sets and entropy capacity, Discrete Contin. Dyn. Syst., 2008, 20(2), 275–311

  • [7] Block L.S., Coppel W.A., Dynamics in One Dimension, Lecture Notes in Math., 1513, Springer, Berlin, 1992

  • [8] Blokh A., Bruckner A.M., Humke P.D., Smítal J., The space of ω-limit sets of a continuous map of the interval, Trans. Amer. Math. Soc., 1996, 348(4), 1357–1372

  • [9] Bowen R., Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., 1971, 153, 401–414

  • [10] Brin M., Stuck G., Introduction to Dynamical Systems, Cambridge University Press, Cambridge, 2002

  • [11] Bruckner A.M., Ceder J., Chaos in terms of the map x ↦ ω(x, f), Pacific J. Math., 1992, 156(1), 63–96

  • [12] D’Aniello E., Darji U.B., Chaos among self-maps of the Cantor space, J. Math. Anal. Appl., 2011, 381(2), 781–788

  • [13] D’Aniello E., Darji U.B., Steele T.H., Ubiquity of odometers in topological dynamical systems, Topology Appl., 2008, 156(2), 240–245

  • [14] Devaney R.L., An Introduction to Chaotic Dynamical Systems, 2nd ed., Addison-Wesley Stud. Nonlinearity, Addison-Wesley, Redwood City, 1989

  • [15] Dinaburg E.I., The relation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR, 1970, 190, 19–22 (in Russian)

  • [16] Glasner E., Weiss B., Sensitive dependence on initial conditions, Nonlinearity, 1993, 6(6), 1067–1075

  • [17] Grillenberger C., Constructions of strictly ergodic systems I. Given entropy, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 1973, 25(4), 323–334

  • [18] Hochman M., Genericity in topological dynamics, Ergodic Theory Dynam. Systems, 2008, 28(1), 125–165

  • [19] Huang W., Ye X., Devaney’s chaos or 2-scattering implies Li-Yorke’s chaos, Topology Appl., 2002, 117(3), 259–272

  • [20] Huang W., Ye X., An explicit scattering, non-weakly mixing example and weak disjointness, Nonlinearity, 2002, 15(3), 849–862

  • [21] Koscielniak P., On the genericity of chaos, Topology Appl., 2007, 154(9), 1951–1955

  • [22] Li T.Y., Yorke J.A., Period three implies chaos, Amer. Math. Monthly, 1975, 82(10), 985–992

  • [23] Mai J., Devaney’s chaos implies existence of s-scrambled sets, Proc. Amer. Math. Soc., 2004, 132(9), 2761–2767

  • [24] Oxtoby J.C., Measure and Category, Grad. Texts in Math., 2, Springer, New York-Heidelberg-Berlin, 1971

  • [25] Weiss B., Topological transitivity and ergodic measures, Math. Systems Theory, 1971, 5, 71–75

  • [26] Yano K., A remark on the topological entropy of homeomorphisms, Invent. Math., 1980, 59(3), 215–220

  • [27] Ye X., Zang R., On sensitive sets in topological dynamics, Nonlinearity, 2008, 21(7), 1601–1620


Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.