Holomorphic triples of genus 0

Stefano Pasotti 1  and Francesco Prantil 2
  • 1 Universita Cattolica
  • 2 University of Trento


Here we study the relationship between the stability of coherent systems and the stability of holomorphic triples over a curve of arbitrary genus. Moreover we apply these results to study some properties and give some examples of holomorphic triples on the projective line.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Bradlow S.B., Daskalopoulos G.D., García-Prada O., Wentworth R., Stable augmented bundles over Riemann surfaces, Vector bundles in algebraic geometry (Durham 1993), London Math. Soc. Lecture Notes Ser., 1995, 208, 15–67

  • [2] Bradlow S.B., García-Prada O., An application of coherent systems to a Brill-Noether problem, J. Reine Angew. Math., 2002, 551, 123–143

  • [3] Bradlow S.B., García-Prada O., Stable triples equivariant bundles and dimensional reduction, Math. Ann., 1996, 304, 225–252 http://dx.doi.org/10.1007/BF01446292

  • [4] Bradlow S.B., García-Prada O., Gothen P.B., Moduli spaces of holomorphic triples over compact Riemann surfaces, Math. Ann., 2004, 328, 299–351 http://dx.doi.org/10.1007/s00208-003-0484-z

  • [5] Bradlow S.B., García-Prada O., Gothen P.B., Homotopy groups of moduli spaces of representations, preprint available at http://arxiv.org/abs/math/0506444 v2

  • [6] Bradlow S.B., García-Prada O., Mercat V., Muñoz V., Newstead P.E., On the geometry of moduli spaces of coherent systems on algebraic curves, preprint available at http://arxiv.org/abs/math/0407523 v5

  • [7] Bradlow S.B., García-Prada O., Munoz V., Newstead P.E., Coherent systems and Brill-Noether theory, Internat. J. Math., 2003, 14, 683–733 http://dx.doi.org/10.1142/S0129167X03002009

  • [8] Grothendieck A., Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math., 1957, 79, 121–138 (in French) http://dx.doi.org/10.2307/2372388

  • [9] Lange H., Newstead P.E., Coherent systems on elliptic curves, Internat. J. Math., 2005, 16, 787–805 http://dx.doi.org/10.1142/S0129167X05003090

  • [10] Lange H., Newstead P.E., Coherent systems of genus 0, Internat. J. Math., 2004, 15, 409–424 http://dx.doi.org/10.1142/S0129167X04002326

  • [11] Lange H., Newstead P.E., Coherent systems of genus 0 II Existence results for k ≥ 3, Internat. J. Math., 2007, 18, 363–393 http://dx.doi.org/10.1142/S0129167X07004072

  • [12] Pasotti S., Prantil F., Holomorphic triples on elliptic curves, Results Math., 2007, 50, 227–239 http://dx.doi.org/10.1007/s00025-007-0248-2

  • [13] Schmitt A., A universal construction for the moduli spaces of decorated vector bundles, Habilitationsschrift, University of Essen, 2000


Journal + Issues