On order structure and operators in L ∞(μ)

Irina Krasikova 1 , Miguel Martín 2 , Javier Merí 2 , Vladimir Mykhaylyuk 3 ,  and Mikhail Popov 3
  • 1 Department of Mathematics, Zaporizhzhya National University, Zaporizhzhya, Ukraine
  • 2 Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, Granada, Spain
  • 3 Department of Mathematics, Chernivtsi National University, Chernivtsi, Ukraine


It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Albiac F., Kalton N., Topics in Banach Space Theory, Graduate Texts in Mathematics 233, Springer, New York, 2006

  • [2] Aliprantis CD., Burkinshaw O., Positive Operators, Springer, Dordrecht, 2006

  • [3] Benyamini Y., Lin P.-K., An operator on L p without best compact approximation, Israel J. Math., 1985, 51, 298–304 http://dx.doi.org/10.1007/BF02764722

  • [4] Flores J., Ruiz C, Domination by positive narrow operators, Positivity, 2003, 7, 303–321 http://dx.doi.org/10.1023/A:1026211909760

  • [5] Jech Th., Set Theory, Springer, Berlin, 2003

  • [6] Kadets V, Martín M., Merí J., Shepelska V, Lushness, numerical index one and duality, J. Math. Anal. Appl., 2009, 357, 15–24 http://dx.doi.org/10.1016/j.jmaa.2009.03.055

  • [7] Kadets V.M., Popov M.M., On the Liapunov convexity theorem with applications to sign-embeddings, Ukr. Mat. Zh., 1992, 44(9), 1192–1200 http://dx.doi.org/10.1007/BF01058369

  • [8] Kadets V.M., Popov M.M., The Daugavet property for narrow operators in rich subspaces of the spaces C[0,1] and L 1[0,1], Algebra i Analiz, 1996, 8, 43–62 (in Russian), English translation: St. Petersburg Math. J., 1997, 8, 571–584

  • [9] Krasikova I.V., A note on narrow operators in L ∞, Math. Stud., 2009, 31(1), 102–106

  • [10] Lindenstrauss J., Pełczyński A., Absolutely summing operators in ℒp-spaces and their applications, Studia Math, 1968, 29, 275–326

  • [11] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. 1, Sequence spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1977

  • [12] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, Vol. 2, Function spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1979

  • [13] Maslyuchenko O.V, Mykhaylyuk V.V., Popov M.M., A lattice approach to narrow operators, Positivity, 2009, 13, 459–495 http://dx.doi.org/10.1007/s11117-008-2193-z

  • [14] Plichko A.M., Popov M.M., Symmetric function spaces on atomless probability spaces, Dissertationes Math., 1990, 306, 1–85


Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.