Fractional derivative generalization of Noether’s theorem

Abstract

The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, (San Diego, CA: Academic), 1999.

  • [2] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (Series on Complexity, Nonlinearity and Chaos), World Scientific, 2012.

  • [3] A.H. Bhrawy and M.A. Abdelkawy, J. Comput. Phys. 294, (2015), 462-483.

  • [4] H. Jafari, N. Kadkhoda, D. Baleanu , Nonlinear Dynamics, Vol. 81(3) 1569-1574, (2015).

  • [5] P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107. Springer, New York, 1993.

  • [6] M. Nadjafikhah, V. Shirvani, J. Commun. Nonlinear Sci. Numer. Simul. 17, 14 pages (2012).

  • [7] A.R. Adem, B. Muatjetjeja, , Appl. Math. Lett. 48 109-117, (2015).

  • [8] R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk, J. Phys. Scr. T136, 014016 (2009).

  • [9] E. Noether, Math-phys. Klasse, 24 pages (1918), which originally appeared in Transport Theory and Statistical Physics, 1 (3), 25 pages (1971).

  • [10] M.A. Tavel, English translation of [9], http://arxiv.org/abs/physics/0503066v1.

  • [11] F. Riewe, Phys. Rev. E (3) 53 (2), 10 pages (1996).

  • [12] F. Riewe, Phys. Rev. E (3) 55 (3) (part B), 12 pages (1997).

  • [13] O.P. Agrawal, J. Math. Anal. Appl. 272 (1) 12 pages (2002).

  • [14] G.S.F. Frederico, D.F.M. Torres, J. Math. Anal. Appl. 334, 13 pages (2007).

  • [15] G.S.F. Frederico, D.F.M. Torres, J. Appl. Math. Comput. 217(3), 11 pages (2010).

  • [16] P.J. Torvik, R.L. Bagley, J.Applied Mechanics, Transactions of ASME, 51(2), 5 pages (1984).

  • [17] P.J. Torvik, R.L. Bagley, AIAA Journal, 21(5), 8 pages (1983).

  • [18] M. Caputo, J. R. Astr. Soc. 13, 11 pages (1967).

  • [19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.

  • [20] M. Nadjafikhah, F. Ahangari, J. Commu. Theor. Phys.(Beijing), 59(3), 4 pages (2013).

  • [21] E.A. Rawashdeh, J. Appl. Math. Comput. 174(2) , 8 pages (2006).

OPEN ACCESS

Journal + Issues

Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant and original works in all areas of mathematics. The journal publishes both research papers and comprehensive and timely survey articles. Open Math aims at presenting high-impact and relevant research on topics across the full span of mathematics.

Search